Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Премия института Клэя

Тип Реферат
Предмет Математика
Просмотров
1743
Размер файла
17 б
Поделиться

Ознакомительный фрагмент работы:

Премия института Клэя

Математическим институтом Клэя в Кембридже, штат Массачусетс (CMI) определены семь задач, за решение которых дается премия. Были отмечены некоторые из наиболее сложных проблем, с которыми математики бились на рубеже второго тысячелетия. Это было сделано для того, чтобы донести до широкой общественности тот факт, что математика изобилует важными нерешенными задачами, чтобы подчеркнуть важность работы, направленной на решение самых глубоких, самых сложных проблем, и признать историческое значение достижений в области математики.

О премии было объявлено на встрече в Париже, состоявшейся 24 мая 2000 года в Коллеж де Франс. Тогда были представлены три лекции. Тимоти Гауэрс говорил о важности математики, Майкл Атья и Джон Тейт говорили о самих задачах.

Семь задач тысячелетия были выбраны Научно-консультативным советом института, который обсуждал их с ведущими специалистами всего мира. В центре внимания совета были важные классические задачи, которые не поддавались решению в течение многих лет.

Следуя решению Научно-консультативного совета, совет директоров института Клэя определил призовой фонд в 7 миллионов долларов за решение этих задач, с выделением $ 1 млн. долларов за решение каждой задачи.

Заметим, что одной из семи задач является гипотеза Римана, сформулированная в 1859 году, которая находится также в списке из двадцати трех задач, представленном Давидом Гильбертом в Париже 9 августа 1900 года.

Итак, вот эти задачи.

Гипотеза Берча — Свиннертон-Дайера

Математики всегда были увлечены задачей описания всех целочисленных решений алгебраических уравнений типа

Евклид дал полное решение для данного уравнения, но для более сложных уравнений это сделать крайне тяжело. Действительно, в 1970 году Ю.В. Матиясевич показал, что десятая проблема Гильберта неразрешима, т. е. не существует общего метода определения, когда такие уравнения имеют решения в целых числах. Но в некоторых случаях можно надеяться что-то получить. Когда решения являются точками абелева многообразия, Бирч и Свиннертон-Дайер утверждают, что размер группы рациональных точек связан с поведением соответствующей дзета-функции вблизи точки . В частности, эта удивительная гипотеза утверждает, что если , то существует бесконечное число рациональных точек (решений), и наоборот, если , то существует лишь конечное число таких точек.

Гипотеза Ходжа

В ХХ веке математики открыли мощный способ исследовать формы сложных объектов. Основная идея метода состоит в том, чтобы выяснить, в какой степени мы можем аппроксимировать форму данного объекта склеиванием простых геометрических блоков возрастающей размерности. Эта методика оказалась настолько полезной, что ее обобщали различными способами, в конечном счете давшими мощные инструменты, который позволили математикам сильно продвинуться в каталогизации различных объектов, с которыми они сталкиваются в своих исследованиях. К сожалению, геометрическое происхождение метода стало скрытым в этом обобщении. В некотором смысле было необходимо добавить кусочки, которые не имели геометрической интерпретации. Гипотеза Ходжа утверждает, что для особенно хороших типов пространств, называемых проективными алгебраическими многообразиями, части, называемые циклами Ходжа, являются на самом деле (рациональными линейными) комбинациями геометрических частей, называемых алгебраическими циклами.

Уравнение Навье-Стокса

Волны следуют за нашей лодкой, когда мы плывем по озеру, и турбулентные потоки воздуха сопровождают наш полет в современном самолете. Математики и физики полагают, что объяснение и предсказание таких явлений, как ветер и турбулентность, могут быть найдены на основе понимания решения уравнений Навье-Стокса. Хотя эти уравнения были получены в 19-м веке, наше понимание их остается минимальным. Задача состоит в том, чтобы добиться существенного прогресса на пути к математической теории, которая откроет тайны, скрытые в уравнении Навье-Стокса.

Задача о равенстве классов P и NP

Предположим, что вы организуете размещение группы из четырехсот студентов университета. Количество мест ограничено, и только сто студентов получат места в общежитии. Ситуация усложняется тем, что декан предоставил вам список пар студентов, которые не могут жить вместе, и просил, чтобы ни одна пара из этого списка не попала в окончательный вариант. Это пример того, что ученые-компьютерщики называют NP-задачей. Легко проверить, будет ли данный выбор ста студентов, предложенный сотрудником, удовлетворительным (т.е. никакая пара студентов из списка вашего коллеги не фигурирует в списке из деканата), однако задача создания такого списка с нуля, кажется абсолютно невыполнимой. Действительно, общее число способов выбора ста студентов из четырехсот претендентов больше, чем количество атомов в известной вселенной! Таким образом, никакая будущая цивилизация не может даже надеяться построить суперкомпьютер, способный решить эту задачу с помощью грубой силы, то есть проверяя все возможные комбинации 100 студентов. Однако эта кажущаяся трудность может только отражать отсутствие изобретательности вашего программиста. В самом деле, одной из нерешенных проблем в области компьютерной науки является определение того, существуют ли вопросы, ответы на которые можно быстро проверить, но которые требуют невозможно долгого времени для решения любым прямым методом. Задачи, подобные той, что указана выше, конечно, кажутся задачами такого рода, но до сих пор никто не смог доказать, что какая-то из них на самом деле так сложна, как кажется, т.е. что действительно нет возможности получить ответ с помощью компьютера. Стивен Кук и Леонид Левин сформулировали задачу сравнения классов P (то есть легко найти) и NP (то есть легко проверить) в 1971 году.

Теория Янга-Миллса и дефект массы

Законы квантовой физики в мире элементарных частиц играют ту же роль, что и законы Ньютона классической механики в макроскопическом мире. Почти полвека назад Янг и Миллс ввели новую замечательную концепцию для описания элементарных частиц с помощью структур, которые встречаются также в геометрии. Квантовая теория Янга-Миллса в настоящее время является основой большей части теории элементарных частиц, и ее предсказания были проверены во многих экспериментальных лабораториях, но ее математическая основа остается неясной. Успешное применение теории Янга-Миллса для описания сильных взаимодействий элементарных частиц зависит от тонкого квантово-механического свойства, которое называют дефектом массы: квантовые частицы имеют положительную массу, хотя классические волны распространяются со скоростью света. Это свойство было обнаружено физиками в экспериментах и подтверждено компьютерным моделированием, но оно до сих пор непонятно с теоретической точки зрения. Прогресс в создании теории Янга-Миллса и дефекта массы потребует новых фундаментальных идей как в физике, так и в математике.

Гипотеза Римана

Некоторые числа имеют особое свойство, они не могут быть выражены как произведение двух меньших чисел, например, 2, 3, 5, 7 и т.д. Такие числа называются простыми, и они играют важную роль как в чистой математике, так и в ее приложениях. Распределение таких простых чисел среди всех натуральных чисел не является упорядоченным, однако немецкий математик Георг Фридрих Бернхард Риман (1826 — 1866) заметил, что частота простых чисел очень тесно связана с поведением сложной функции

,

которая называется дзета-функцией Римана. Гипотеза Римана утверждает, что все вещественные части так называемых нетривиальных решений уравнения

лежат на некоторой вертикальной прямой. Это было проверено для первых 1500000000 решений. Доказательство того, что это верно для каждого нетривиального решения могло бы пролить свет на многие тайны, окружающие распределение простых чисел.

Гипотеза Пуанкаре (доказана Григорием Перельманом в 2002-2003 гг.)

Если натянуть резинку вокруг поверхности яблока, то можно стянуть его в точку, медленно перемещая его, не разрывая и не позволяя ему выйти за пределы резинки. С другой стороны, если мы представим себе, что эта же резинка как-то была растянута вокруг бублика, то нет никакого способа стянуть ее в точку, не нарушая ни резинки, ни бублика. Мы говорим, что поверхность яблока “односвязная’’, а поверхность бублика — нет. Пуанкаре почти сто лет назад знал, что двумерная сфера фактически характеризуется этим свойством связности, и задал такой же вопрос для трехмерной сферы (множества точек в четырехмерном пространстве, находящихся на единичном расстоянии от начала координат).

Этот вопрос оказался чрезвычайно трудным. Почти столетие прошло между его формулировкой в 1904 году Анри Пуанкаре и ответом на него Григорием Перельманом, который был размещен в препринтах на ArXiv.org в 2002 и 2003 годах. Решение Перельмана было основано на теории Ричарда Гамильтона о потоках Риччи, и использовало результаты на пространстве метрик, принадлежащие Чигеру, Громову и самому Перельману. В своих работах Перельман доказал также геометрическую гипотезу Уильяма Терстона, частным случаем которой является гипотеза Пуанкаре.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно