Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Тепловой расчет котла-утилизатора П-83

Тип Реферат
Предмет Промышленность и производство
Просмотров
1196
Размер файла
108 б
Поделиться

Ознакомительный фрагмент работы:

Тепловой расчет котла-утилизатора П-83

СОДЕРЖАНИЕ

1. Описание котла утилизатора П-83

2. Исходные данные

3. Расчет энтальпий газов

4. Расчет коэффициента использования тепла

5. Расчет пароперегревателя высокого давления

6. Расчет испарителя высокого давления

7. Расчет второй ступени экономайзера высокого давления

8. Расчет пароперегревателя низкого давления

9. Расчет испарителя низкого давления

10. Расчет экономайзера низкого давления

11. Расчет первой ступени экономайзера низкого давления

12. Расчет кипящего экономайзера

13. Расчет дополнительного экономайзера


1. ОПИСАНИЕ КОТЛА УТИЛИЗАТОРА П-83

Котел предназначен для работы в составе газотурбинной установки мощностью 345 МВТ.

Котел двухкорпусный, с естественной циркуляцией, выполнен в туннельной компановке.Два корпуса котла между собой функционально не связаны.

Газоход заполнен поверхностями нагрева, представляющими собой шахматные пакеты труб, расположенных вертикально. Пакеты труб собираются из типовых секций шириной 2340 мм и высотой 11800 мм. Каждая секция представляет собой два ряда труб, замкнутых вверху и внизу коллекторами. Все поверхности нагрева выполнены из труб 32×4 мм, с наружным спирально-ленточным ореберением.

Каждая поверхность набирается из одинакового количества секций по ширине котла, но разного по ходу газов.

Пароперегреватель высокого давления – 4 блока типовых секций по ширине газохода, в каждом блоке по 4 секции, соединенных последовательно.

Испаритель высокого давления – 4 блока по ширине газохода, 6 секций в блоке по глубине.

Экономайзер высокого давления, вторая ступень – 4 блока по ширине газохода, 4 секции по глубине.

Пароперегреватель низкого давления – 4 блока по ширине газохода, 4 секции по глубине.

Испаритель низкого давления – 4 блока по ширине газохода, 6 секций по глубине.

Экономайзер высокого давления, первая ступень – 2 бока по ширине газохода и 2 ряда секций по глубине.

Экономайзер низкого давления – 2 блока по ширине по 2 секции в каждом.

Кипящий экономайзер – один ряд типовых секций.

Дополнительный экономайзер – 4 блока по ширине газохода по 3 ряда секций.

2. ИСХОДНЫЕ ДАННЫЕ

1. Расход охлаждаемых газов через котел 1142·103 м3/ч

2. Температура газов перед котлом 519 0С

3. Темература уходящих газов 96 0С

4. Давление газов перед котлом 3,0 КПа

5. Состав газов: N2=75,0 %, CO2=3,0 %, H2O=8,0 %, O2=14,0 %

6. Давление перегретого пара 8/0,7 МПа

7. Температура перегретого пара 470/220 0С

8. Паропроизводительность 170/43 т/ч

9. Расход пара через пароперегреватель 165/37,5 т/ч

10. Расход воды через ЭНД 95 т/ч

11.Расход воды через кипящий экономайзер 30 т/ч

12. Расход воды через дополнительный экономайзер 267 т/ч

13. Паросодержание пароводяной смеси

На выходе из кипящего экономайзера 0,16

3. РАСЧЕТ ЭНТАЛЬПИЙ ГАЗОВ

Объемные доли

ri=ki/100; (3.1)

rN2=75/1=0,75;

rCO2=3/100=0,03;

rH2O=8/100=0,08;

rO2=14/100=0,14.

Расчет энтальпий

Iг=∑(ri+Ci)∙υг, где (3.2)

υг - температура газов 0С,

Ci - средняя теплоемкость, кДж/(м3·К).

Энтальпия газов при температуре 100 0С, кДж/м3:

Iг=(0,75·1,295+0,03·1,702+0,08·1,506+0,14·1,318)·100=132,7.

Энтальпии газов в интервале температур 0 – 100 0С приведены в таблице 1.

Таблица 1 – Энтальпии газов.

υг, 0СIг, кДж/м3ΔIг, кДж/м3
00 -
100132,7132,7
200267,2134,5
300404,1136,9
400544,4140,3
500688,5144,1
500835,8147,4

4. РАСЧЕТ КОЭФФИЦИЕНТА ИСПОЛЬЗОВАНИЯ ТЕПЛА

Коэффициент использования тепла, %:

где

I’ку=716,48 кДж/кг – энтальпия газов на входе в котел (табл.1) ,

I’’ку=127, 39 кДж/кг – энтальпия газов на выходе из котла (табл.1).

Потери тепли в окружающую среду, %:

q5=0,63.

Коэффициент сохранения тепла:

5. РАСЧЕТ ПАРОПЕРЕГРЕВАТЕЛЯ ВЫСОКОГО ДАВЛЕНИЯ

Геометрические характеристики:

Диаметр и толщина стенок труб:

мм.

Поперечный шаг между трубами:

S1=72 мм.

Продольный шаг между трубами:

S2=85 мм.

Относительный поперечный шаг:

σ1=S1/d ,

σ1=0,072/0,032=2,52 м.

Относительный продольный шаг:

σ2=S2/d ,


σ2=0,085/0,032=2,65 м.

Компановка труб – шахматная.

Высота ребра:

hрб=13 мм.

Толщина ребра:

мм.

Шаг между ребрами:

Sрб=5,0 мм.

Диаметр оребрения:

D=d+2∙hрб ,

D=32+2·13=58 мм.

Количество труб по ширине газохода:

z1=132.

Условный диаметр:

мм.

Длина труб:

l=11,5 мм.

Сечение для прохода газов:

Fг=a·b-z1·dy·l,

Fг=(10,55-0,9674)·11,5-0,0372·132·11,5=53,5 м2.

Число труб в одном сдвоенном ряду:


Nтр=z1·2,

Nтр=132·2=264.

Сечение для прохода пара:

fп=0,785·d2вн·Nтр,

fп=0,785·0,0242·264=0,119 м2.

Внутренняя поверхность теплообмена одного сдвоенного ряда:

Hвн=π∙dвн∙lтр∙Nтр,

Hвн=3,14∙0,028∙11,5∙264=266,9 м2.

Количество сдвоенных рядов: z=3.

Поверхность нагрева ребер одного сдвоенного ряда:

м2.

Гладкая поверхность нагрева одного сдвоенного ряда:

м2.

Полная поверхность нагрева одного сдвоенного ряда:

H1р=Hрб+Hгл,


H1р=2341,3+244=2585,3 м2.

Полная поверхность нагрева пароперегревателя:

H=H1р∙z,

H=2585,3∙3=7755,9 м2.

Тепловой расчет

Температура газов перед ППВД, 0С:

Энтальпия газов перед ППВД, кДж/м3:

Iг=716,48.

Температура перегретого пара, 0С:

tпе=470.

Давление перегретого пара, МПа:

Pпе=8.

Энтальпия перегретого пара, кДж/кг:

iпе=3328,53.

Давление в барабане, МПа:

Pб=8,4.

Температура насыщенного пара, 0С:

tн=300,3.

Энтальпия насыщенного пара, кДж/кг:

iн’’=2749,9.

Уравнение баланса, кДж/м3:

(5.1)

Энтальпия газов после ППВД, кДж/м3:

(5.2)

Температура газов после ППВД, 0С:

Температурный напор (перекрестное движение сред), 0С:

, где (5.3)

Ψ – коэффициент пересчета от противоточной схемы к более сложной,

Δtпрт – температурный напор при противотоке.

Ψ=1.

Температурный напор при противотоке, 0С:

(5.4)

Температурный напор на входе при противотоке, 0С:

(5.5)

Температурный напор на выходе при противотоке, 0С:

(5.6)

Температурный напор при противотоке, 0С:

Температурный напор, 0С:

Δt=1·95=95.

Средняя температура газов, 0С:

(5.7)

Скорость газов, м/с:

(5.8)

Коэффициент теплоотдачи конвекцией, :

где (5.9)

n=0,7+0,08·φ+0,005·Ψр, где

Ψр=8,48,

n=0,7+0,08·(-0,86)+0,005·8,48=0,67.

CS – коэффициент, определяемый в зависимости от относительных поперечного и продольного шагов труб в пучке, типа пучка.

(5.10)

CZ – поправка на число рядов труб по ходу газов.

При z2=6<8 и <2,0, то

(5.11)

Коэффициент теплопроводности, Вт/м·к:

λ=5,57·10-2.

Коэффициент кинематической вязкости, м2/сек:

ν=71,63·10-6.

Критерий Прандтля:

Pr=0,62.

Средняя температура пара, 0С:

(5.12)

Скорость пара, м/с:

где (5.13)

υ=0,03287 м3/кг – средний удельный объем пара.

Коэффициент теплоотдачи от стенки к пару, :

(5.14)

Коэффициент теплопроводности, Вт/м·к: λ=6,34·10-2

Коэффициент кинематической вязкости, м2/сек:

где (5.15)

μ – коэффициент динамической вязкости, (кгс·сек)/м2:

μ=2,86·10-6.

Критерий Прандтля: Pr=1,135.

Эквивалентный диаметр, м:

(5.16)

Поправка Ct. В элементах котла температура стенки при течении пара мало отличается от температуры среды. поэтому Ct=1.

Поправка Cd=1.

Cl=1, l/d>50.

Коэффициент теплоотдачи от газов к стенке, :

(5.17)

Коэффициент теплопередачи, :

где (5.18)


Ψ=0,8 – коэффициент эффективности.

α1пр – приведенный коэффициент теплоотдачи.

где (5.19)

(5.20)

м.

(5.21)

м.

Е – коэффициент эффективности ребра.

где (5.22)

λрб=45,5 Вт/(м·к) – коэффициент теплопроводности материала ребра.

φЕ – коэффициент, учитывающий неравномерность теплоотдачи по поверхности ребра.

φЕ=1-0,058·m·hрб, (5.23)

φЕ=1-0,058·56,3·0,013=0,958.

μ – коэффициент, учитывающий влияние уширения ребра к основанию.

μ=1,03 (1, номограмма 6).

Е=0,78 (1, номограмма 6).

Уравнение теплопередачи, кДж/м3:

(5.24)

Погрешность, %:

(5.25)

6. РАСЧЕТ ИСПАРИТЕЛЯ ВЫСОКОГО ДАВЛЕНИЯ

Геометрические характеристики.

Геометрические характеристики такие же как и у ППВД за исключением:

Количество сдвоенных рядов: z=9.

Полная поверхность нагрева испарителя, м2:

H=H1р∙z,


H=2585,3∙9=23267.

Тепловой расчет

Температура газов перед ИСПВД , 0С:

(из расчета ППВД).

Энтальпия газов перед ИСПВД, кДж/м3:

Iг=634,9

Давление в барабане, МПа:

Pб=8,4.

Температура насыщенного пара, 0С:

tн=297.

Энтальпия насыщенного пара, кДж/кг:

iн’’=2756,2.

Температура насыщенной воды, 0С:

tн’=297.

Энтальпия насыщенной воды, кДж/кг:

i’н=1329,9.

Температура недогрева до кипения, 0С:

Δtнед=4.

Температура воды на выходе из экономайзера, 0С:

t’’эвд=tн’- Δtнед,

t’’эвд=297-4=293.

Энтальпия воды на выходе из экономайзера, кДж/кг:

i’’эвд=1306,9.

Величина недогрева до кипения, кДж/кг:

Δiнед=i’н-i’’эвд,

Δiнед=1329,9-1306,9=23.

Скрытая теплота парообразования, кДж/кг:

r=1426.

Уравнение баланса, кДж/м3:

(6.1)

Энтальпия газов после ИСППВД, кДж/м3:

(6.2)

Температура газов после ИСППВД, 0С:

Температурный напор (перекрестное движение сред), 0С:

, где (6.3)

Ψ – коэффициент пересчета от противоточной схемы к более сложной,

Δtпрт – температурный напор при противотоке.

Ψ=1.

Температурный напор при противотоке, 0С:

(6.4)

Температурный напор на входе при противотоке, 0С:

(6.5)

Температурный напор на выходе при противотоке, 0С:

(6.6)

Температурный напор при противотоке, 0С:

Температурный напор, 0С:

Δt=1·54=54.

Средняя теипература газов, 0С:

(6.7)

Скорость газов, м/с:

(6.8)

Коэффициент теплоотдачи конвекцией, :

где (6.9)

n=0,7+0,08·φ+0,005·Ψр, где

Ψр=8,48,

n=0,7+0,08·(-0,86)+0,005·8,48=0,67.

CS – коэффициент, определяемый в зависимости от относительных поперечного и продольного шагов труб в пучке, типа пучка.

(6.10)

CZ – поправка на число рядов труб по ходу газов.

При z2=18>8, то СZ=1.

Коэффициент теплопроводности, Вт/м·к:

λ=5,58·10-2.

Коэффициент кинематической вязкости, м2/сек:

ν=55,85·10-6.

Критерий Прандтля:

Pr=0,64.

Коэффициент теплоотдачи от газов к стенке, :

(6.11)

Коэффициент теплопередачи, :

где (6.12)

Ψ=0,8 – коэффициент эффективности.

α1пр – приведенный коэффициент теплоотдачи.

где (6.13)

(6.14)

м.

(6.15)

м.

Е – коэффициент эффективности ребра.

где (6.16)

λрб=45,5 Вт/(м·к) – коэффициент теплопроводности материала ребра.

φЕ – коэффициент, учитывающий неравномерность теплоотдачи по поверхности ребра.

φЕ=1-0,058·m·hрб, (6.17)

φЕ=1-0,058·60,3·0,013=0,955.

μ – коэффициент, учитывающий влияние уширения ребра к основанию.

μ=1,03 (1, номограмма 6).

Е=0,78 (1, номограмма 6).

Уравнение теплопередачи, кДж/м3:

(6.18)

Погрешность, %:

(6.19)

7. РАСЧЕТ ЭКОНОМАЙЗЕРА ВЫСОКОГО ДАВЛЕНИЯ, ВТОРАЯ СТУПЕНЬ

Геометрические характеристики.

Геометрические характеристики такие же как и у ППВД за исключением:

Количество сдвоенных рядов: z=6.

Полная поверхность нагрева испарителя, м2:

H=H1р∙z,

H=2585,3∙6=15512.

Тепловой расчет

Температура газов перед ЭВД , 0С:

(из расчета ИСПВД).

Энтальпия газов перед ЭВД, кДж/м3:

Iг=417,3.

Температура воды после ЭВД, 0С:

t’’эвд=293 (из расчета ИСПВД).

Энтальпия воды после ЭВД, кДж/кг:

i’’эвд=1306,9.

Температура воды перед ЭВД, 0С:

t’эвд=161,7.

Энтальпия воды перед ЭВД, кДж/кг:

i’эвд=688,2.

Уравнение баланса, кДж/м3:

(7.1)

Энтальпия газов после ЭВД, кДж/м3:

(7.2)

Температура газов после ЭВД, 0С:

Температурный напор (перекрестное движение сред), 0С:

, где (7.3)

Ψ – коэффициент пересчета от противоточной схемы к более сложной,

Δtпрт – температурный напор при противотоке.

Ψ=1.

Температурный напор при противотоке, 0С:

(7.4)


Температурный напор на входе при противотоке, 0С:

(7.5)

Температурный напор на выходе при противотоке, 0С:

(7.6)

Температурный напор при противотоке, 0С:

Температурный напор, 0С:

Δt=1·40=40.

Средняя температура газов, 0С:

(7.7)

Скорость газов, м/с:

(7.8)

Коэффициент теплоотдачи конвекцией, :

где (7.9)

n=0,7+0,08·φ+0,005·Ψр, где

Ψр=8,48,

n=0,7+0,08·(-0,86)+0,005·8,48=0,67.

CS – коэффициент, определяемый в зависимости от относительных поперечного и продольного шагов труб в пучке, типа пучка.

(7.10)

CZ – поправка на число рядов труб по ходу газов.

При z2=12>8, то СZ=1.

Коэффициент теплопроводности, Вт/м·к:

λ=4,63·10-2.

Коэффициент кинематической вязкости, м2/сек:

ν=40,88·10-6.

Критерий Прандтля:

Pr=0,65.

Коэффициент теплоотдачи от газов к стенке, :

(7.11)

Коэффициент теплопередачи, :

где (7.12)

Ψ=0,8 – коэффициент эффективности.

α1пр – приведенный коэффициент теплоотдачи.

где (7.13)

(7.14)

м.


(7.15)

м.

Е – коэффициент эффективности ребра.

где (7.16)

λрб=45,5 Вт/(м·к) – коэффициент теплопроводности материала ребра.

φЕ – коэффициент, учитывающий неравномерность теплоотдачи по поверхности ребра.

φЕ=1-0,058·m·hрб, (7.17)

φЕ=1-0,058·57,3·0,013=0,957.

μ – коэффициент, учитывающий влияние уширения ребра к основанию.

μ=1,03 (1, номограмма 6).

Е=0,78 (1, номограмма 6).

Уравнение теплопередачи, кДж/м3:

(7.18)

Погрешность, %:

(7.19)

8. РАСЧЕТ ПАРОПЕРЕГРЕВАТЕЛЯ НИЗКОГО ДАВЛНЕНИЯ

Температура газов перед ППНД, 0С:

(из расчета ЭВД).

Энтальпия газов перед ППНД, кДж/м3:

Iг=324,4.

Температура перегретого пара, 0С:

tпе=220.

Давление перегретого пара, МПа:

Pпе=0,7.

Энтальпия перегретого пара, кДж/кг:

iпе=2891,9.

Давление в барабане, МПа:

Pб=0,73.

Температура насыщенного пара, 0С:

tн=165.

Энтальпия насыщенного пара, кДж/кг:

iн’’=2764,14.

Уравнение баланса, кДж/м3:

(8.1)


Энтальпия газов после ППНД, кДж/м3:

(8.2)

Температура газов после ППНД, 0С:

9. РАСЧЕТ ИСПАРИТЕЛЯ НИЗКОГО ДАВЛЕНИЯ

Температура газов перед ИСПНД , 0С:

(из расчета ППНД).

Энтальпия газов перед ИСПНД, кДж/м3:

Iг=320.

Давление в барабане, МПа:

Pб=0,73.

Температура насыщенной воды, 0С:

tн’=165.

Энтальпия насыщенной воды, кДж/кг:

i’н=694,3

Температура недогрева до кипения, 0С:

Δtнед=4.

Температура воды на выходе из экономайзера, 0С:

t’’энд=tн’- Δtнед,

t’’энд=165-4=161.

Энтальпия воды на выходе из экономайзера, кДж/кг:

i’’энд=676,3.

Величина недогрева до кипения, кДж/кг:

Δiнед=i’н-i’’энд,

Δiнед=694,3-676,4=18.

Скрытая теплота парообразования, кДж/кг:

r=2069,8.

Уравнение баланса, кДж/м3:

(9.1)

Энтальпия газов после ИСПНД, кДж/м3:

(9.2)

Температура газов после ИСПНД, 0С:

10. РАСЧЕТ ЭКОНОМАЙЗЕРА НИЗКОГО ДАВЛЕНИЯ

Температура газов перед ЭНД , 0С:

(из расчета ИСПНД).

Энтальпия газов перед ЭНД, кДж/м3:

Iг=240,5.

Температура воды после ЭНД, 0С:

t’’энд=161 (из расчета ИСПНД).

Энтальпия воды после ЭНД, кДж/кг:

i’’энд=676,3.

Температура питательной воды, 0С:

tПВ=110.

Энтальпия питательной воды, кДж/кг:

iПВ=462,15.

Уравнение баланса, кДж/м3:

(10.1)

11. ТЕПЛОВОЙ РАСЧЕТ ЭКОНОМАЙЗЕРА ВЫСОКОГО ДАВЛЕНИЯ, ПЕРВАЯ СТУПЕНЬ

Температура газов перед ЭНД , 0С:

(из расчета ИСПНД).

Энтальпия газов перед ЭНД, кДж/м3:

Iг=240,5.

Температура воды после ЭВД, 0С:

t’’эвд=161,7.

Энтальпия воды после ЭВД, кДж/кг:

i’’эвд=680,45.

Температура питательной воды, 0С:

tПВ=110.

Энтальпия питательной воды, кДж/кг:

iПВ=467,2.

Уравнение баланса, кДж/м3:

(11.1)

Энтальпия газов после ЭНД и ЭВД, кДж/м3:

(11.2)

Температура газов после ЭВД и ЭНД, 0С:

12. РАСЧЕТ КИПЯЩЕГО ЭКОНОМАЙЗЕРА

Температура газов перед КипЭ , 0С:

(из расчета ЭНД и ЭВД).

Энтальпия газов перед КипЭ, кДж/м3:

Iг=190,2.

Давление в деаэраторе, МПа:

Рд=0,15.

Температура воды после КипЭ, 0С:

t’’КипЭ=110.

Энтальпия воды после КипЭ, кДж/кг:

i’’КипЭ=462,15.

Температура воды перед КипЭ, 0С:

t’КипЭ=110.

Энтальпия воды перед ЭВД, кДж/кг:

i’КипЭ=419,83.

Паросодержание пароводяной смеси на выходе их КипЭ:

x=0,16.

Уравнение баланса, кДж/м3:

(12.1)

Энтальпия газов после КипЭ, кДж/м3:

(12.2)

Температура газов после КипЭ, 0С:

13. РАСЧЕТ ДОПОЛНИТЕЛЬНОГО ЭКОНОМАЙЗЕРА

Температура газов перед ДопЭ , 0С:

(из расчета КипЭ).

Энтальпия газов перед ДопЭ, кДж/м3:

Iг=180,8.

Температура воды после ДопЭ, 0С:

t’’допэ=100,6.

Энтальпия воды после ДопЭ, кДж/кг:

i’’допэ=419,4.

Температура воды перед ДопЭ, 0С:

t’допэ=60.

Энтальпия воды перед ЭВД, кДж/кг:

i’эвд=251,4.

Уравнение баланса, кДж/м3:

(13.1)

Энтальпия газов после ДопЭ, кДж/м3:

(13.2)

Температура газов после ДопЭ, 0С:


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно