Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Простейшие способы обработки опытных данных

Тип Реферат
Предмет Математика
Просмотров
1081
Размер файла
66 б
Поделиться

Ознакомительный фрагмент работы:

Простейшие способы обработки опытных данных

Министерство Образования Российской Федерации

Вятский Государственный Гуманитарный Университет

Математический факультет

Кафедра математического анализа и МПМ

Выпускная квалификационная работа

Простейшие способы обработки опытных данных.

Выполнила студентка 5курса

математического факультета

О.И. Окуловская

/подпись/


Научный руководитель:

Старший преподаватель кафедры математического анализа и МПМ

Л.В. Ончукова

/подпись/


Рецензент:

Старший преподаватель кафедры математического анализа и МПМ

Л.В. Караулова

/подпись/


Допущена к защите в ГАК

Зав. кафедрой М.В. Крутихина

/подпись/ << >>

Декан факультета В.И.Варанкина

/подпись/ << >>

Киров

2003

Оглавление.

Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

§1.Простейшие способы обработки опытных данных . . . . . . . . . . . 4

1.1.Подбор параметров способом средних . . . . . . . . . . . . . . . . . . 4

1.2.Подбор параметров способом наименьших

квадратов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

§2.Применение простейших способов обработки опытных

данных к конкретным процессам . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.Применение простейших способов обработки опытных данных к математической модели . . . . . . . . . . . . . . . . . . . . . 8

2.2. Применение простейших способов обработки

опытных данных к физической модели . . . . . . . . . . . . . . . 10

2.3. Применение простейших способов обработки опытных данных к реальному процессу . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Заключение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Литература . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Введение.

Данная тема не достаточно широко освещена в математической литературе.В математической статистике при обработке опытных данных чаще всего применяются способ средних и способ наименьших квадратов.

В настоящее время эти способы широко применяются при обработке количественных результатов естественно-научных опытов, технических данных, астрономических и геодезически наблюдений и измерений.

Также возможно применение этих способов при обработке полученных практическим путем данных физических процессов. Например, изучая силу тока в проводниках с постоянным сопротивлением, мы можем зафиксировать значение силы тока при определенном напряжении, то есть не во всех точках, а в небольшом количестве. Применяя способ средних и способ наименьших квадратов, мы имеем возможность с помощью полученных точек подобрать такую функцию, которая бы наиболее близко проходила через эти точки. Это позволяет более полно использовать информацию из наблюдений.

Цели данной работы:

1. Овладение простейшими способами обработки опытных данных.

2. С помощью способа средних и способа наименьших квадратов для экспериментально найденных функционально зависимых величин подобрать функцию, которая наиболее точно описывала бы данный процесс.

3. Применить описанные методы для описания реальных процессов.

§ 1. Простейшие способы обработки опытных данных.

1.1.Подбор параметров способом средних.

Способ средних основывается на допущении, что наи­более подходящей линией служит та, для которой алгебраическая сумма укло­нений равна нулю. Для того чтобы найти этим способом неизвестные постоян­ные в эмпирической формуле, сначала подставляем в эту формулу все пары наблюдавшихся или замеренных значений xи yи получаем столько уклонений, сколько пар значений (x ; y)в таблице (уклонения—вертикальные расстояния от данных точек до графика функции). Затем распределяем эти уклонения по группам, составляя столько групп, сколько неизвестных параметров эмпи­рической формулы надо найти. Наконец, приравнивая нулю сумму уклонений по каждой группе, получим систему линейных уравнений относительно пара­метров.

a) Частный случай.S= A*tq.

tt1t2t3t4 . . . . . .tn
SS1S2S3S4 . . . . . .Sn

Уклонения имеют вид d = A*tq – S. Подставляя значения S и t, взятые из таблицы, и приравнивая уклонения нулю, получим систему урав­нений относительно параметров Aи q:

(l<n)

Решение этой системы затруднительно. Поэтому без большей потери в точности, можно приравнять нулю сумму уклонений логарифма S, то есть

d’ = lg A + q * lg T – lg S.

Тогда система примет вид

(l<n)

Из системы и определяют q и S.

b) Частныйслучай . S = a0 + a1*t + a2 *t2.


tt1t2t3t4 . . . . . .tn
SS1S2S3S4 . . . . . .Sn

Уклонения имеют вид d =a0 + a1 * t + a2 * t2 - S. Подставляя значения S и t, взятые из таблицы, и приравнивая уклонения нулю, получим систему

урав­нений относительно параметров a0,a1,a2 :

(l<m<n)

Из системы и определяют a0,a1,a2.

1.2.Подбор параметров способом наименьших квадратов.

На практике часто приходится решать такую задачу. Пусть для двух функционально связанных величин xи yизвестны nпар соответствующих значений ,которые могут быть представлены в виде таблицы

xx1x2x3 . . .xn
yy1y2y3 . . .yn

Требуется в наперед заданной формулеy = f(x,a1, a2, …,am)определить mпараметров a1, a2, …,am (m < n)так, чтобы в эту формулу наилучшим образом «укладывались» бы известные n пар значений x иy.

Оценки параметров a1, a2, …,amопределяются из условия, чтобы сумма квадратов отклонений значений y, вычисленных по формуле, от заданных, то есть

L= å [f(xk,a1, a2, …,am) – yk ] 2

принимала наименьшее значение. Поэтому сам способ получил название способа наименьших квадратов.

Это условие дает систему m уравнений, из которых определяются a1, a2, …,am:

∂L/∂a1=0,

∂L/∂a2=0 , (1)

. . . . . .

∂L/∂am=0.

На практике заданную формулу y = f(x,a1, a2, …,am)иногда прихо­дится (в ущерб строгости полученного решения) преобразовывать к такому виду, чтобы систему (1) было проще решать (при подборе параметров в формулах y=A*ect и y=A*tq).

a) Частный случай. y = Aect.

Для упрощения системы (1) эту формулу, связывающую xи y, предвари­тельно логарифмируют и заменяют формулой

lg y = lg A + c*lg e*x .

Продифференцировав величину L по A и c и приравняв нулю, получим систему из двух уравнений с двумя неизвестными A и c.

(2)

Система (2) примет следующий вид:

(2’)

Для определения коэффициентов (2’) удобно составить вспомогательную таблицу:

kxkxk2lg ykxk*lg yk
1x1x12lg y1x1*lg y1
2x2x22lg y2x2*lg y2
nxnxn2lg ynxn*lg yn
å

Из системы (2’) определяют c и A .

б) Частный случай. y=A*xq.

Эту формулу также предварительно логарифмируют и заменяют следующей:

lg y = lg A + q * lg x.

Система (1) теперь примет вид

(4)

Вспомогательная таблица имеет вид

klg xklg2 xklg yklg xk * lg yk
1lg x1lg2 x1lg y1lg x1 * lg y1
2lg x2lg2 x2lg y2lg x2 * lg y2
nlg xnlg2 xnlg ynlg xn * lg yn

Из системы (3) определяют A и q.


§2. Применение простейших способов обработки опытных данных к конкретным процессам.

2.1.Применение простейших способов обработки опытных данных к математической модели .

Задача 1. На рисунке 1 изображена индикаторная диаграмма (упрощенная) паровой машины

S

A

10 B

C

35 70 t

рис.1

Точки кривой ВС соответствуют значениям из таблицы 1:

T3540455055606570
S108,417,216,295,564,964,474,06

Нужно, используя способ средних и способ наименьших квадратов, найти

такую функцию, график которой наиболее приближен к данным точкам.

Способом средних подберем функцию вида S = A*tq , отвечающую

таблице 1. Уклонения имеют вид δ`= lgA + q*lgt – lgS.Подставив

онкретные значения S и t, получим:

δ`1= lg A + 1,5441*q – 1,0000 ,

δ`2= lg A + 1,6021*q – 0,9248 ,

δ`3= lg A + 1,6532*q – 0,8579 ,

δ`4= lg A + 1,6990*q – 0,7987 ,

δ`5= lg A + 1,7404*q – 0,7451 ,

δ`6= lg A + 1,7782*q – 0,6955 ,

δ`7= lg A + 1,8129*q – 0,6503 ,

δ`8= lg A + 1,8451*q – 0,6085 .

Приравняв нулю сумму уклонений по этим двум группам, получаем систему уравнений для определения параметров А и q:

4*lgA+6,4984*q=3,5814 ,

4*lgA+7,1766*q=2,6994 .


Решение этой системы q = -1,3 , A = 1017,02 . Таким образом, искомая

степенная функция имеет вид S = 1017,02 * t–1,3 .

t3540455055606570
S108,417,226,295,564,974,474,06

Ошибка составляет: Σ (ΔSi)2 = 0,012 + 0,012 = 0,0002 .

Способом наименьших квадратов подберем степенную функцию

вида S = A*tq , отвечающую таблице 1.

Составим вспомогательную таблицу:

Kxk = lg Skxk2yk = lg Skxk * yk
11,54412,38421,00001,5441
21,60212,56670,92481,4816
31,65322,73310,85791,4183
41,69902,88660,79871,3570
51,74043,02900,74511,2968
61,77823,16200,69551,2367
71,81293,28660,65031,1789
81,84513,41330,60851,1227
13,674823,45166,280810,6362

Получаем систему уравнений:

13,6748*q+8*lgA=6,2808 ,

23,4516*q+13,6748*lgA=10,6362 .

Решение этой системы q = -1,3 , A = 1017 .Таким образом, искомая

степенная функция имеет вид S = 1017*t–1,3 .

T3540455055606570
S108,427,226,295,564,964,484,06

Ошибка составляет: Σ (ΔSi)2 = 0,012 + 0,012 +0,012= 0,0003 .

Способом наименьших квадратов подберем показательную

функцию S = A*ect, отвечающую таблице 1.

Составим вспомогательную таблицу:

KTt2y=lgSkT*y
13512251,000035,0000
24016000,924836,9920
34520250,837938,6055
45025000,798739,9350
55530250,745140,9805
66036000,695541,7300
76542250,650342,2695
87049000,608542,5950
420231006,2808318,1075

Получаем систему уравнений:

420*c*lge + 8*lgA = 6,2808 ,

23100*c*lge + 420*lgA = 318,1063 .

Решение этой системы c = - 0,026 , A = 23,27 .Таким образом, искомая показательная функция имеет вид S = 23,27 * e– 0,026*t .

T3540455055606570
S9,398,257,256,375,594,914,323,79

Ошибка составляет:

Σ (Δ Si)2 = 0,3721 + 0,0256 + 0,0016 + 0,0064 + 0,0009 + 0,0025 +

+ 0,0729 = 0,5045.

Таким образом, кривую ВС для заданных значений t и S

(таблица 1) наиболее точно описывает степенная функция вида

S = A*tq , найденная с помощью способа средних.

2.2.Применение простейших способов обработки опытных данных

к физической модели .

Задача 2. На рисунке 2 представлена индикаторная диаграмма

дизельного двигателя


Рис.2

Адиабата ВС соответствует значениям таблицы 2:

T468101214161820
S3520,6614,2110,648,396,875,774,954,32

Адиабата AD соответствует значениям таблицы 3:

T2468101214161820
S3513,737,945,393,993,122,532,111,81,56

Требуется с помощью способа средних и способа наименьших

квадратов для адиабат AD и BC найти такие функции, графики которых

наиболее приближены к данным точкам.

Рассмотрим адиабату ВС.

Способом средних подберем функцию вида S = A*tq, отвечающую

таблице 2. Уклонения имеют вид δ`= lgA + q*lgt – lgS.Подставив

конкретные значения S и t, получим:

δ`1= lg A + 0,6021*q – 1,5441 ,

δ`2= lg A + 0,7782*q – 1,3151 ,

δ`3= lg A + 1,9031*q – 1,1526 ,

δ`4= lg A + 1,0000*q – 1,0269 ,

δ`5= lg A + 1,0792*q – 0,9238 ,

δ`6= lg A + 1,1461*q – 0,8370 ,

δ`7= lg A + 1,2041*q – 0,7612 ,

δ`8= lg A + 1,2553*q – 0,6946 ,

δ`9= lgA + 1,3010*q – 0,6355 .

Приравняв нулю сумму уклонений по этим двум группам, получим

систему уравнений для определения параметров А и q:

5*lgA+4,3626*q=5,9625 ,

4*lgA+4,9065*q=2,9283 .

Решение этой системы q = -1.3 , A = 212.22 .Таким образом, искомая

степенная функция имеет вид S = 212.22*t– 1,3 .

T468101214161820
S3520,6614,2210,648,396,875,774,954,32

Ошибка составляет: Σ (ΔSi)2 = 0,012 = 0,0001 .

Способом наименьших квадратов подберем функцию вида S = A*tq , которая отвечает таблице 2.

Составим вспомогательную таблицу:

Kxk = lg tkxk2yk = lg Skxk*yk
10,60210,36251,54410,9297
20,77820,60561,31511,0234
30,90310,70281,15261,0412
41,00001,00001,02691,0269
51,07921,16470,92380,9970
61,14611,31350,83700,9593
71,20411,44990,76120,9166
81,25531,57580,69460,8710
91,30101,69260,63550,8268
9,26909,98028,89078,5928

Получаем систему уравнений:

9,2690*q+9*lgA=8,8907 ,

9,9802*q+ 9,2690*lgA=8,5928 .

Решение этой системы q = -1,3 , A = 212,21 .Таким образом, искомая

степенная функция имеет вид S = 212,21*t–1,3 .

T468101214161820
S3520,6614,2210,658,396,875,774,954,31

Ошибка составляет: Σ (ΔSi)2 = 0,012 + 0,012 = 0,0002 .

Способом наименьших квадратов подберем функцию вида

S = A*ect, отвечающую таблице 2.

Составим вспомогательную таблицу:

Ktt2y=lg SkT * y
14161,54416,1764
26361,31517,8906
38641,15269,2232
4101001,026910,2690
5121440,923811,0856
6141960,837011,7180
7162560,761212,1792
8183240,694612,5028
9204000,635512,7100
10815368,890793,7548

Получаем систему уравнений:

108*c*lge + 98*lg A=8,8907 ,

1536*c*lge + 108*lg A=93,7548 .

Решение этой системы c = - 0,124 , A = 41,05 .Таким образом, искомая показательная функция имеет вид S = 41,05*e– 0,124*t .

T468101214161820
S25,3919,9715,7112,369,727,646,014,733,72

Ошибка составляет:

Σ(Δ Si)2 = 9,612 + 0,692 + 1,52 + 1,722 + 1,332 + 0,782 + 0,332 + 0,022 +

+ 0,262 + 0,432 = 10,6719 .


Рассмотрим адиабату AD.

Способом средних подберем функцию вида S = A*tq , отвечающую

таблице 3. Уклонения имеют вид δ`= lgA + q*lgt – lgS.Подставив

конкретные значения S и t, получим:

δ`1 = lg A + 0,3010*q – 1,5441 ,

δ`2 = lg A + 0,6021*q – 1,1377 ,

δ`3 = lg A + 0,7782*q – 0,8998 ,

δ`4 = lg A + 0,9031*q – 0,7316 ,

δ`5 = lg A + 1,0000*q – 0,6010 ,

δ`6 = lg A + 1,0792*q – 0,4942 ,

δ`7 = lg A + 1,1461*q – 0,4031 ,

δ`8 = lg A + 1,2041*q – 0,3243 ,

δ`9 = lg A + 1,2553*q – 0,2553 ,

δ`10 = lg A + 1,3010*q – 0,1931 .

Приравняв нулю сумму уклонений по этим двум группам, получим

систему уравнений для определения параметров А и q:

5*lgA+3,5844*q=4,9142 ,

5*lgA+5,9867*q=1,6700 .

Решение этой системы q = -1,35, A = 89,125 .Таким образом, искомая

степенная функция имеет вид S = 89,125*t– 1,35 .

T2468101214161820
S34,.9613,727.945.383.983.112.532.111.81.56

Ошибка составляет:

Σ(Δ Si)2= 0,042 + 0,012 + 0,012 + 0,012 + 0,012 = 0,002.

Способом наименьших квадратов подберем функцию вида

S = A*tq , которая отвечает таблице 3.

Составим вспомогательную таблицу:

Kxk=lg tkXk2yk=lg Skxk * yk
10,30100,09061,54410,4648
20,60210,36251,13770,6850
30,77820,60560,89980,7002
40,90310,81560,73160,6607
51,00001,00000,60100,6010
61,07921,16470,49420,5333
71,14611,31350,40310,4620
81,20411,44990,32430,3905
91,25531,57580,25530,3205
101,30101,69260,19310,2512
9,570110,07086,58425,0692

Получаем систему уравнений:

9,5701*q+10*lgA=6,5842 ,

10,0708*q+9,5701*lgA=5.0692 .

Решение этой системы q = -1,35 , A = 89,32 .Таким образом, искомая

степенная функция имеет вид S = 89,32*t–1,35 .

T2468101214161820
S35,0213,757,955,393,993,122,532,121,81,57

Ошибка составляет:

Σ (Δ Si)2 = 0,042 + 0,022 + 0,012 + 0,012 + 0,012 = 0,0023 .

Способом наименьших квадратов подберем функцию вида

S = A*ect, отвечающую таблице 3.

Составим вспомогательную таблицу:

Ktt2y=lgSkt*y
1241,54413,0882
24161,13774,5508
36360,89985,3988
48640,73165,8528
5101000,60106,0100
6121440,49425,9304
7141960,40315,6434
8162560,32435,1888
9183240,25534,5954
10204000,19313,9520
11015406,584250,2206

Получаем систему уравнений:

110*c*lge + 10*lg A=6,5842 ,

1540*c*lge + 110*lg A=50,2206 .

Решение этой системы c = - 0,155 , A = 25,05 .Таким образом, искомая показательная функция имеет вид S = 25,05*e– 0,1550*t .

T2468101214161820
S34,1613,679,887,245,313,902,862,091,541,13

Ошибка составляет:

Σ (Δ Si)2 = 0,842 + 0,262 + 1,942 + 1,852 + 1,322 + 0,782 + 0,332 + 0,022 +

+ 0,262 + 0,432 = 10,6719 .

Таким образом, адиабаты AD и BCдля заданных значений t и S

(таблицы 2 и 3) наиболее точно описывают степенные функции вида

S = A*tq ,найденные с помощью способа средних.

2.3.Применение простейших способов обработки опытных данных к

реальному процессу.

Задача 3. На рисунке 3 изображена индикаторная диаграмма работы пара в цилиндре паровой машины:


рис.3

Точки кривой ABC соответствуют значениям из таблицы 4:

T7,715,823,932,040,148,256,364,472,580,688,7
S60,653,032,224,419,917,015,013,312,011,06,2

Точки кривой EHD соответствуют значениям из таблицы 5:

T7,715,823,932,040,148,256,364,472,580,688,7
S5,81,20,60,60,70,80,91,01,31,85,7

Требуется, используя способ средних и способ наименьших квадратов,

для кривых ABC и EHD найти такие функции, графики которых наиболее приближены к данным точкам.

Для кривой BC подберем функции вида S = A*tq и S = A*ect с

помощью способа средних и способа наименьших квадратов,

соответствующие таблице 4.1:

T23,932,040,148,256,364,472,580,688,7
S32,224,419,917,015,013,312,011,06,2

Способом средних подберем функцию вида S = A*tq , которая

отвечает таблице 4.1. Уклонения имеют вид δ`= lgA + q*lgt – lgS.

Подставив конкретные значения S и t, получим:

δ`1 = lg A + 1,3784*q – 1,5079 ,

δ`2 = lg A + 1,5052*q – 1,3874 ,

δ`3 = lg A + 1,6031*q – 1,2989 ,

δ`4 = lg A + 1,6830*q – 1,2304 ,

δ`5 = lg A + 1,7505*q – 1,1761 ,

δ`6 = lg A + 1,8098*q – 1,1239 ,

δ`7 = lg A + 1,8603*q – 1,0792 ,

δ`8 = lg A + 1,9063*q – 1,0414 , δ`9 = lg A + 1,9479*q – 0,7924 .

Приравняв нулю сумму уклонений по этим двум группам, получим

систему уравнений для определения параметров A и q:

5*lgA+7,9202*q=6,6007 ,

4*lgA+7,5234*q=4,0369 .

Решение этой системы q = -1,05 ,A = 955,94 .Таким образом, искомая

степенная функция имеет вид S = 955,94*t–1,05 .

T23,932,040,148,256,364,472,580,688,7
S34,1325,1219,8216,3413,8812,0510,649,528,61

Ошибка составляет:

Σ (Δ Si)2 = (-1,93)2 + (-0,72)2 + 0,082 + 0,662 + 1,122 + 1,252 + 1,362 +

+ 1,482 + (-2,41)2 = 17,3503 .

Способом наименьших квадратов подберем функцию вида

S = A*tq , которая отвечает таблице 4.1.

Составим вспомогательную таблицу:

Kxk = lgSkxk2yk = lgSkxk * yk
11,37841,90001,50792,0785
21,50522,26561,38742,0883
31,60312,56991,29892,0823
41,68312,83281,23042,0709
51,75053,06431,17612,0588
61,80893,27211,12392,0330
71,86043,46111,07922,0077
81,90633,63401,04141,9852
91,94793,79430,79241,5435
15,443826,794110,637417,9477

Получаем систему уравнений:

15,4438*q+9*lgA=10,6374 ,

26,7941*q+15,4438*lgA=17,9477.

Решение этой системы q = -1,03 , A = 900,27 .Таким образом, искомая

степенная функция имеет вид S = 900,27*t–1,03 .



T

23,932,040,148,256,364.472,580,688,7
S34,2525,3620,1016,6314,1712,3410,929,798,87

Ошибка составляет:

Σ (Δ Si)2 = (-2,05)2 + (-0,96)2 + (-0,2)2 + 0,372+ 0,832 + 0,962 + 1,082 +

+ 1,212 + (-2,67)2 = 16,6709.

Способом наименьших квадратов подберем функцию вида

S = A*ect, отвечающую таблице 4.1.

Составим вспомогательную таблицу:

Ktt2y=lgSkt*y
123,9571,211,507936,0328
232,01024,001,387444,3968
340,11608,011,298952,0859
448,22323,241,230459,3053
556,33169,691,176166,2144
664,44147,361,123972,3792
772,55256,251,079278,2420
880,66496,361,041483,9368
988,77867,690,792470,2859
506,732463,8110,6374562,8791

Получаем систему уравнений:

506,7*c*lge + 9*lgA = 10,6374 ,

32463,81*c*lge + 506,7*lgA = 562,8791 .

Решение этой системы c = -0,02 , A = 49,76 .Таким образом, искомая показательная функция имеет вид S = 49,76*e-0,02*t .

T23,932,040,148,256,364,472,580,688,7
S30,926,2922,3719,0316,1913,7811,729,988.49

Ошибка составляет:

Σ (Δ Si) 2 = 1,32 + (-1,89)2 + (-2,47)2 + (-2,03)2 + (-1,19)2 + (-0,48)2 + 0,282 +

+ 1,022 + (-2,29)2 = 23,4933.

Для кривой AB подберем функцию вида S=a0 + a1*t + a2*t2 с

помощью способа средних, отвечающую таблице 4.2:

T7,715,823,9
S60,653,032,2

Уклонения имеют вид δ`= a0 + a1*t + a2*t2 - S. Подставив конкретные

значения S и t, получим:

δ`1= a0 + 7,7*a1 + 59,29*a2 – 60,6 ,

δ`2= a0 + 15,8*a1 + 249,64*a2 – 53,0 ,

δ`3= a0 + 23,9*a1 + 571,21*a2 – 32,2 .

Приравняв нулю эти уклонения, получим систему трех уравнений

для определения параметров a0, a1, a2:

a0 + 7,7*a1 + 59,29*a2 = 60,6

a0 + 15,8*a1 + 249,64*a2 = 53,0

a0 + 23,9*a1 + 571,21*a2 = 32,2

Решениеэтойсистемы a0 = 55,67, a1 = 1,41,a2 = - 0,1.Такимобразом,

искомая квадратичная функция имеет вид S= 55,67 + 1,41*t – 0,1*t2 .

T7,715,823,9
S60,652,9832,25

Ошибка составляет:

Σ (ΔSi) 2 = 0,022 + (-0,05)2 = 0,0029.

Таким образом, кривую BC для заданных значений t и S

(таблица 4.1) наиболее точно описывает степенная функция вида

S = A*tq , найденная с помощью способа наименьших квадратов. А

кривую AB для заданных значений t и S (таблица 4.2) наиболее точно

описывает квадратичная функция вида S = a0 + a1*t + a2*t2, найденная

с помощью способа средних.

Для кривой HD подберем функции вида S = A*tq и S = A*ect с

помощью способа средних и способа наименьших квадратов,

соответствующие таблице 5.1:

T23,932,040,148,256,364,472,580,688,7
S0,60,60,70,80,91,01,31,85,7

Способом средних подберем функцию вида S = A*tq , отвечающую

таблице 5.1.Уклонения имеют вид δ`= lgA + q*lgt – lgS. Подставив

конкретные значения S и t, получим:

δ`1 = lg A + 1,3783*q – (- 0,2218) ,

δ`2 = lg A + 1,5052*q – (- 0,2218) ,

δ`3 = lg A + 1,6031*q – (-0,1549) ,

δ`4 = lg A + 1,6831*q – (-0,0969) ,

δ`5 = lg A + 1,7505*q – (- 0,0458) ,

δ`6 = lg A + 1,8089*q – 0 ,

δ`7 = lg A + 1,8604*q – 0,1139 ,

δ`8 = lg A + 1,9063*q – 0,2553 ,

δ`9 = lgA + 1,9479*q – 0,7559 .

Приравняв нулю сумму уклонений по этим двум группам, получим

систему уравнений для определения параметров A и q:

5*lgA+7,9202*q= - 0,7412 ,

4*lgA+7,5234*q= 1,1251.

Решение этой системы q = 1,45 , A = 0,004 .Таким образом, искомая

степенная функция имеет вид S = 0,004*t1,45 .

T23,932,040,148,256,364,472,580,688,7
S0,400,610,841,11,381,671,992,322,67

Ошибка составляет:

Σ (Δ Si)2 = 0,22 + (-0,01)2+(-0,14)2 + (-0,3)2 + (-0,48)2 + (-0,67)2 + (-0,69)2+

+ (-0,52)2+ 3,032= 10,7564 .

Способом наименьших квадратов подберем функцию вида

S = A*tq , отвечающая таблице 5.1.

Составим вспомогательную таблицу:

kxk = lg Skx k2yk = lg Skxk*yk
11,37841,9000-0,2218-0,3057
21,50522,2656-0,2218-0,3338
31,60312,5699-0,1549-0,2483
41,68312,8328-0,0969-0,1631
51,75053,0643-0,0458-0,0802
61,80893,272100
71,86043,46110,11390,2119
81,90633,63400,25530,4867
91,94793,79430,75591,4724
15,443826,79410,38391,0399

Получаем систему уравнений:

15,4438*q+9*lgA=0,3839 ,

26,7941*q+15,4438*lgA=1,0399.

Решение этой системы q = 1,3 , A = 0,006 .Таким образом, искомая

степенная функция имеет вид S = 0,006 * t1,3 .

T23,932,040,148,256,364,472,580,688,7
S0,40,540,730,921,131,351,571,82,04

Ошибка составляет:

Σ (Δ Si)2 = 0,22+0,062+(-0,03)2+ (-0,12)2 + (-0,23)2 +(-0,35)2 + (-0,27)2+

+ 3,662= 13,7028 .

Способом наименьших квадратов подберем функцию вида

S = A*ect, отвечающая таблице 5.1.


Составим вспомогательную таблицу:

ktt2y = lg Skt*y
123,9571,21-0,2218-5,3010
232,01024,0-0,2218-7,0976
340,11608,01-0,1549-6,2115
448,22323,24-0,0969-4,6706
556,33169,69-0,0458-2,5785
664,44147,3600
772,55256,250,11398,2578
880,66496,360,255320,5772
988,77867,690,755967,0483
506,732763,810,383970,0241

Получаем систему уравнений:

506,7*c*lge + 9*lg A = 0,3839 ,

32763,81*c*lge + 506,7*lg A = 70,0241.

Решение этой системы c = 0,03 , A = 0,25 .Таким образом, искомая

показательная функция имеет вид S = 0,25e0,03 * t .

T23,932,040,148,256,364,472,580,688,7
S0,510,650,831,061,351,722,192,793,55

Ошибка составляет:

Σ (Δ Si) 2 = 0,092 + (-0,05)2+(-0,13)2+(-0,26)2 + (-0,45)2+(-0,72)2 +

+(-0,89)2+(-0,99)2 + 2,152=7,2107 .

Для кривой EH подберем квадратичную функцию вида

S=a0 + a1*t + a2*t2 с помощью способа средних, отвечающую таблице 5.2:

T7,715.823,9
S5,81,20,6

Уклонения имеют вид δ`= a0 + a1*t + a2*t2 - S. Подставив конкретные значения S и t, получим:

δ`1= a0 + 7,7*a1 + 59,29*a2 – 5,8 ,

δ`2= a0 +15,8*a1 + 249,64*a2 – 1,2 ,

δ`3= a0 + 23,9*a1 + 571,21*a2 – 0,6 .

Приравняв нулю эти уклонения, получим систему трех уравнений

для определения параметров a0, a1, a2:

a0 + 7,7*a1 + 59,29* a2 = 5,8 ,

a0 +15,8*a1 + 249,64* a2 = 1,2 ,

a0 + 23,9*a1 + 571,21* a2 = 0,6 .

Решениеэтойсистемы a0 = 13,8 , a1 = -1,27, a2 = 0,03 .Такимобразом,

искомая квадратичная функция имеет вид S = 13,8 – 1,27*t + 0,03*t2 .

T7,715,823,9
S5,781,220,58

Ошибка составляет:

Σ (Δ Si)2 = 0,022 + (-0,02)2 + 0,022 = 0,0012.

Таким образом, кривую HD для заданных значениях t и S

(таблица 5.1) наиболее точно описывает показательная функция

S = A*ect, найденная с помощью способа наименьших квадратов.

А кривую EH для заданных значениях t и S (таблица 5.2) наиболее

точно описывает квадратичная функция S=a0 + a1*t + a2*t2 .

Для реального процесса работы пара в цилиндре, зная только

одиннадцать значений (t; S), мы подобрали функции:

- кривую AB наиболее точно описывает квадратичная функция

S = 55,67 + 1,41*t – 0,1*t2 , где t є [0;23,9];

- кривую BC наиболее точно описывает степенная функция

S = 900,27 * t-1,03, где t є [23,9;+∞);

- кривую EH наиболее точно описывает квадратичная функция

S = 13,8 - 1,27*t + 0,03*t2 , где t є [0;23,9];

- кривую HD наиболее точно описывает показательная функция

S = 0,25 * e0,03 * t, где t є [23,9;+∞).

Cпомощью найденных функций можно:

ä- приближенно вычислить работу пара в цилиндре не только в

заданных точках, но и в промежуточных. Например, можно примерно подсчитать, что при объеме пара t = 55 в процессе расширения давление

пара в цилиндре S= 900,27*55-1,03 = 14,51 , а в процессе сжатия

S = 0,25*e0,03 *55 = 1,3. При объеме пара t = 10 в процессе расширения

давление пара в цилиндре S = 55,67 + 1,41*10 – 0,1*102 = 59,77 ,а в

процессе сжигания S = 13,8 - 1,27*10 + 0,03*102 = 4,1.

ä-сделать предположение о том, как будет происходить работа паровой

машины при увеличении объема до бесконечности (что невозможно

проделать на практике).

Заключение.

В данной работе были достигнуты следующие цели:

1. Овладение простейшими способами обработки опытных данных.

2. С помощью способа средних и способа наименьших квадратов для экспериментально найденных функционально зависимых величин подобрать функцию, которая бы наиболее точно описывала данный процесс.

3. Применение вышеназванных способов для описания реальных процессов.

При этом нельзя сделать однозначный вывод о том, какой способ наиболее точно описывает тот или иной процесс. Например, к математической и физической моделям наиболее точно можно подобрать функции с помощью способа средних. А реальный процесс лучше описывать не одной функцией, а несколькими на различных промежутках.

Таким образом, для обработки опытных данных необходимо использовать и способ средних, и способ наименьших квадратов.

Литература.

1. Берман Г.Н. Сборник задач по курсу математического анализа. –

СПб.: Профессия, 2001.

2. Данко П.Е. и другие. Высшая математика в упражнениях и задачах. –

М.: Высшая школа, 1999.

3. Мантуров О.В. Курс высшей математики. -


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно