Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Решение военно-логистических задач по выбору оптимального маршрута для военно-транспортных средств

Тип Реферат
Предмет Математика
Просмотров
903
Размер файла
61 б
Поделиться

Ознакомительный фрагмент работы:

Решение военно-логистических задач по выбору оптимального маршрута для военно-транспортных средств

МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ

Кафедра высшей математики

Дисциплина «Математический анализ»

ОТЧЕТ

по курсовой работе

Тема: «Решение военно-логистических задач по выбору оптимального маршрута для военно-транспортных средств»

г.Москва 2009г.


Общая постановка задачи

Транспортное средство или колонна транспортных средств следует из пункта А в пункт Б. Существует несколько возможных маршрутов движения колонны, каждый из которых характеризуется n линейными участкам, протяженностью L и скоростью движения по ним V. Требуется обосновать выбор оптимального маршрута по критерию минимума времени на его прохождение.

В качестве целевой функции здесь принимается аддитивная функция суммарного времени:

а в качестве ограничения функция вида ,где L- расстояние от А до Б в направлении которого выбраны линейные участки L.

I Этап: Словесная и математическая постановка задачи.

1). Словесная постановка задачи.

2). Математическая постановка задачи.

II. Этап:

Математическая постановка задачи дана на карте.

III.Этап: Проведение расчетов и анализ полученных результатов.

Словесная постановка маршрутной задачи

В Московской области проводятся учения 12-армии,16-армии. Первый передовой отряд танкового соединения и второй механизированный отряд 12-армии, действует в оперативной глубине противника(16-армии) и имеют поставленную задачу захватить город Королев. Первый отряд танкового соединения вышел колонной в 9.30 с города Дубна к 10.00 колонна была уже в городе Конаково Тверской области. Второй механизированный отряд вышел с города Алексин и в 10.00 колонна прибыла в город Калуга.

У противника (16-армии)выдвигаются к городу Королев две мотострелковые бригады :

1-ая мотострелковая бригада 9.50 находится в городе, Рязановский Рязанской области.

2-ая мотострелковая бригада в 9.50 находится в городе Кольчугино, Владимирской области.

Характер местности и положение сил армий показаны на карте. Скорость движения колонн: V=20 км.ч – вне дороги, V=40км.ч – по дороги.

Необходимо выдать рекомендации командиру батальона танкового соединения и механизированного отряда для выбора оптимального маршрута с городов Конаково, Калуга до пункта назначения города Королев. Оценить возможности батальона по упреждению противника в выходе к городу Королев. Сделать выводы.

Итак, согласно нашего разбиения переходим к пункту 1 первого этапа:

Исходя из словесной постановки задачи, для определенности были взяты реальные расстояния от городов до пункта назначения. По исходным данным определим тип задач, которые нам придется решать.

Задача выбора оптимального маршрута относится к классу задач нелинейного программировния, они имеют место в трех основных случаях:

- целевая функция и ограничения являются нелинейными формами искомых переменных;

- целевая функция линейна, ограничения - нелинейные формы искомых переменных;

- целевая функция не линейна, ограничения – линейные формы искомых переменных.

Маршрутные задачи относятся к третьему классу задач нелинейной оптимизации.

Наиболее же эффективным и доступным является классический метод условного экстремума.

Сущность метода. Условным экстремумом функции z=f(x1,x2,x3……xn) называется экстремум этой функции, достигнутый при условии, что переменные x1,x2,x3…..xn связаны уравнением связи H= (x1,x2,x3…..xn). Отыскание условного экстремума сводится к исследованию на обычный экстремум так называемой функции Лагранжа:

U=f(x1,x2,x3…..xn).+ [H- (x1,x2,x3…..xn)]

Где - неопределенный постоянный множитель Лагранжа.

Необходимые условия экстремума определяется следующей системой уравнений:

(x1,x2,x3,……xn)=0

Если оптимизируема функция является функцией двух переменных f(x,y),то необходимые условия экстремума запишутся в виде


Решение этих систем уравнений дает искомый результат в виде переменных Xi (i=1,n) или переменных X,Y.

Математическая постановка задачи

Для решения данную задачу разобьем на 4 математических подзадачи:

Оптимизация маршрута с города Конакова до города Королева.

1. Оптимизация маршрута с города Калуга до города Королева.

2. Оптимизация маршрута с города Кольчугина до Королева.

3. Оптимизация маршрута с города Рязановский до города Королева.

Скорость колонны вне дороги V1= 20 км/ч, по дороге V2=40 км/ч, все расстояния показаны на карте.

I.Оптимизация маршрута с города Конаково до города Королева. Оптимизация маршрута стороны А означает выбор такого направления движения φ из т очки ο в точку b (или что тоже самое, выбор координаты Х), при котором общее время, потребное для совершения маршрута до переправы, было бы минимальным. Из рисунка видно, что маршрут включает два линейных пути, а следовательно, и два интервала времени: время t1 движения вне дороги на расстояние l = ob и время t2 движения по дороги на расстояние y. Таким образом, Т= t1+ t2.


Но t1 = = , а t2 = =

И поэтому целевая функция является нелинейной функцией двух переменных, связанных между собой соотношением вида L=x+y, выступающим в качестве линейного ограничения на переменные х и у. В соответствии с содержанием методом условного экстремума запишем функцию Лагранжа.

Т*( х, у, λ) = ++ λ (L-x-y)

Беря частные производные от Т по х, у и λ и приравнивая их нулю, получим следующую систему алгебраических уравнений:

,

,

,

Решая эту систему относительно х и у, найдем искомые участки оптимального маршрута


Х0 =, y0=L-,

Отметим три возможных варианта маршрута движения от точки О до Е. IA( o, a, E), IIA (o, b, E) для оптимального φ0 и IIIA(oE). С учетом заданных числовых параметров задачи времена движения по этим маршрутам будут равны

tA1= 3.25 ч , tA2= 3.14 ч , tA3= 5.05 ч

II.Оптимизация маршрута с города Калуга до города Королева. Оптимизация маршрута стороны С означает выбор такого направления движения φ из т очки Uв точку P (или что тоже самое, выбор координаты Х), при котором общее время, потребное для совершения маршрута до переправы, было бы минимальным. Из рисунка видно, что маршрут включает два линейных пути, а следовательно, и два интервала времени: время t1 движения вне дороги на расстояние l = up и время t2 движения по дороги на расстояние y. Таким образом, Т= t1+ t2.

Но t1 = = , а t2 = =

И поэтому Т== +

Целевая функция является нелинейной функцией двух переменных, связанных между собой соотношением вида L1=x1+y1, выступающим в качестве линейного ограничения на переменные х1 и у1. В соответствии с содержанием методом условного экстремума запишем функцию Лагранжа.

Т*( X1, Y1, λ1) = ++ λ1(L1-X1-Y1)

Беря частные производные от Т по х1, у1 и λ1 и приравнивая их нулю, получим следующую систему алгебраических уравнений:

,

,

.

Решая эту систему относительно х1 и у1, найдем искомые участки оптимального маршрута

Х1 =, y1=L1-,


Отметим три возможных варианта маршрута движения от точки U до P. IA( U, C,P ), IIA (U, T, P) для оптимального φ1 и IIIA(UP). С учетом заданных числовых параметров задачи времена движения по этим маршрутам будут равны

tA4=3.5ч , tA5= 3.42 , tA6= 6.02 .

Оптимизация маршрута с города Рязановский до города Королева

Оптимальный маршрут для с города Рязановский до города Королева следует искать на смешанных прямолинейных участках движения. Составляющие маршрута обозначим прямыми N, e, d, D. Оптимизация маршрута означает определение координат z1 , z , и z2 , или то же самое, углов φ и η.

По аналогии с предыдущим случаем здесь оптимизируемой функцией является функция вида

а ограничением – линейная функция L= z1+z+z2.

Cучетом их выражений Лангража запишем в следующей форме:

Т*=

Исследуя эту функцию в том же порядке, что и функцию, окончательно получим:

z1=,

z2 = ,

z= L1-

Отметим на карте пять возможных маршрутов выдвижения колонны из точки N в точку DIв (N,f,e,d,D); IIв ( N,e, d, D); IIIв (N, f, c, d); IVв ( N,e, c, d); Vв (N, D) и для записанных исходных данных вычислим их временные продолжительности. Результаты вычислений представлены следующими значениями tв1=5,8 ч, tв2 = 4,9 ч, tв3 = 4,95 ч, tв4 = 4,7 ч, tв5 =5,97 ч.

Оптимизация маршрута с города Кольчугино до города Королева

Оптимизация маршрута стороны 16 армии означает выбор такого направления движения φ из точки R в точку E (или что тоже самое, выбор координаты Х2), при котором общее время, потребное для совершения маршрута до переправы, было бы минимальным. Из рисунка видно, что маршрут включает два линейных пути, а следовательно, и два интервала времени: время t1 движения вне дороги на расстояние l = rg и время t2 движения по дороги на расстояние Y2. Таким образом, Т= t1+ t2.


Но t1 = = , а t2 = =

И по этому Т== +

Целевая функция является нелинейной функцией двух переменных, связанных между собой соотношением вида L2=x2+y2, выступающим в качестве линейного ограничения на переменные х и у. В соответствии с содержанием методом условного экстремума запишем функцию Лагранжа.

Т*( х2, у2, λ2) = ++ λ2(L2-x2-y2)

Беря частные производные от Т по х, у и λ и приравнивая их нулю, получим следующую систему алгебраических уравнений:

Решая эту систему относительно х2 и у2, найдем искомые участки оптимального маршрута

Х2 =, y2=L-,


Отметим три возможных варианта маршрута движения от точки R до Е. IA( r, g, E), IIA (r,o , E) для оптимального φ2 и IIIA(rE). С учетом заданных числовых параметров задачи времена движения по этим маршрутам будут равны

TB6= 3,62 ч, tB7= 3,48 ч, tB8= 5,34 ч .

Обозначим возможные маршруты 12 армии i =1,2,3, а возможные маршруты 16 армии j = 1,2,3,4,5 и определим упреждение в выходе 12 армии к городу Королев.ΔtjI= tBJ– tAI – 0,17,т.к. колонны 16 армии начали выдвижение раньше, чем колонны 12 армии, на 10 минут. Результаты расчетов для наглядности сведем в таблицу.

Продолжит.маршрутов

12 армии tAI

Продолжительность маршрутов 16 армии tBJ
tB1tB2tB3tB4tB5tB6tB7tB8
tAI2,381,591,531,282,550,20,061,92
tA22,491,591,641,392,660,310,172,03
tA30,58-0,32-0,27-0,520,75-1,6-1,740,12
tA42,131,231,281,032,3-0,05-0,191,67
tA52,151,251,31,052,32-0,03-0,171,69
tA6-0,22-1,29-1,24-1,49-0,22-2,57-2,71-0,85

Вывод

Из анализа данных этой таблицы следует, что выбор командиром батальона 12 армии любого из двух первых маршрутов гарантирует ему упреждающий выход к переправе. Наибольшее время упреждения имеет место для второго маршрута движения, т.е. самого оптимального. Выбор командиром батальона четвертого маршрута практически исключает возможность упреждающего выхода на переправу и решения задачи по ее удержанию. Выбор остальных маршрутов полностью исключает возможность выхода на переправу. Рассмотренная модель маршрутной задачи может лечь в основу постановки и решения аналогичных задач военного содержания, с которыми приходиться сталкиваться командиру и штабу при планировании боевых действий или боевой учебы.


Литература

1) Малявко К.Ф. «Применение математических методов в военном деле».

2) Журко М.Д. «Математические методы и основы их применения в управлении войсками».

3) Иванов П.И. «Применение методов прикладной математики в военном деле».


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно