Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Коды Фибоначи Коды Грея

Тип Реферат
Предмет Информатика
Просмотров
297
Размер файла
71 б
Поделиться

Ознакомительный фрагмент работы:

Коды Фибоначи Коды Грея

Реферат

по курсу “Теория информации и кодирования ”

Тема:

"СПЕЦИАЛЬНЫЕ КОДЫ"

1. КОДЫ ФИБОНАЧЧИ

1.1 ЗОЛОТЫЕ ПРОПОРЦИИ

В математике существует большое количество иррациональных (несоизмеримых) чисел, т. е. обозначающих длину отрезка несоизмеримого с единицей масштаба. Ряд из них широко используется как в математике, так и в др. областях.

Например: Число p = 2pR/D=3,14159… , которое представляет отношение длины окружности к ее диаметру. Число e = 2,71828… , при этом . Логарифмы с основанием e удобны для математических расчетов. Число Ö2 =1,44… , которое представляет отношение диагонали к стороне квадрата и ряд других чисел.

Особое иррациональное число a = (1+Ö5)/2 = 1,61803, которое называется золотая пропорция или золотое сечение и является результатом решения задачи деления отрезка в крайнем и среднем отношении (рис. 1)

A C B

о o o

Рис. 1 Деление отрезка

Если задан отрезок AB то необходимо найти такую точку C, чтобы выполнялось условие AB/CB = CB/AC.

Обозначим: x = CB/AC; (CB+AC)/CB = 1+1/x = x.

При этом x2–x–1 = 0. Корни этого уравнения равны: x1,2=(1±Ö5)/2.

Положительный корень называется золотой пропорцией , а точка C - золотым сечением. Золотая пропорция обладает рядом уникальных свойств.

Пропорция 1,61... использовалась в архитектуре, художественных произведениях, музыке с античных времен. С этим числом связан ореол мистики, таинственности, божества и т.д.

В последнее десятилетие эта пропорция нашла свое применение в ЭВМ, АЦП-ЦАП, измерениях и т. д.

1.2ЧИСЛА ФИБОНАЧЧИ

С золотым сечением тесно связаны числа Фибоначчи открытые итальянским математиком Леонардо из Пизы (Фибоначчи) в XIII веке, которые вычислены по формуле:

(1)

Эти числа представляют ряд: 1, 1, 2, 3, 5, 8, 13, 21...

Отношение соседних чисел Фибоначчи 1/1, 2/1, 3/2, 5/3, 8/5, 13/8, 21/13 ... в пределе стремится к золотой пропорции

. (2)

Числа Фибоначчи обладают еще рядом полезных свойств. Например, остатки от деления чисел Фибоначчи на 2 образуют последовательность: 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, ... и т. д.

Обобщенные числа Фибоначчи или p-числа Фибоначчи вычисляются по рекуррентной формуле:

(3)

Где p = 0, 1, 2, 3, … . При р = 0 число j0(n) совпадает с двоичными разрядами 2n (табл. 1).

Таблица 1

n012345
j0(n)12481632

При р = 1 число j0(n) совпадает с обычным рядом Фибоначчи:

1, 1, 2, 3, 5, 8, ...

При р = число j0(n) = 1 для любого n ³ 0 равно:

1, 1, 1, 1, 1, 1, 1, 1, ...

1.3 КОДЫ ФИБОНАЧЧИ

Любое натуральное число N можно представить с помощью p-чисел Фибоначчи

(4)

где: ai Î{0, 1} - двоичная цифра i-го разряда; jp(i) - вес i-го разряда;

Любое натуральное число N можно представить также следующим способом:


(5)

Такое представление чисел N называется p-кодом Фибоначчи. Каждому pÎ{0, 1, 2, …, ¥} соответствует свой код, т. е. их число бесконечно.

При p = 0 p -код Фибоначчи совпадает с двоичным кодом.

Для 1-кода Фибоначчи кодовые комбинации имеют вид:

Таблица 2


N

KK Вес порядка
54321
0A000000
1A100001
1A200010
2A300011
2A400100
3A500101
3A600110
4A700111
3A801000
4A910001
4A1001010
5A1101011
5A1201100
6A1301101
6А1401110
7А1501111
NKK

Вес порядка

54321
5A1610000
6A1710001
6А1810010
7A1910011
7A2010100
8A2110101
8A2210110
9A2310111
8A2411000
9A2511001
9A2611010
10A2711011
10A2811100
11A2911101
11A3011110
12А3111111

Как видно из таблицы 5 разрядным 1-кодом Фибоначчи можно закодировать 13 натуральных чисел от 0 до 12, при этом каждому числу соответствует множество комбинаций.

Коды Фибоначчи образуют соответствующую систему счисления с набором арифметических операций.

Сложение: Вычитание:

0+0 = 0; 0- 0 = 0;

0+1 = 1; 1 -1 = 0;

1+0 = 1; 1 -0 = 1;

1+1 = 111; 10-1 = 1;

1+1 = 1001; 110 -1 = 11;

1000-1 = 111.

При сложении 2-х единиц может быть:

1. j1(n)+j1(n)=j1(n)+j1(n-1)+j1(n-2) т. е. равно 1 и перенос 1 в два младших разряда.

2. j1(n)+j1(n)=j1(n+1)+j1(n-2) т. е. равно 0 и перенос 1 в два разряда - предыдущий и последующий.

Коды Фибоначчи обладают рядом полезных свойств (например, избыточность и т. д.), позволяющих строить быстродействующие и помехоустойчивые АЦП (“фибоначчевые” АЦП), реализующих специальные алгоритмы преобразования. Коды Фибоначчи используются для диагностики ЭВМ, в цифровых фильтрах для улучшения спектрального состава сигнала за счет перекодировки и др. областях.


2. ДВОИЧНЫЙ ОТРАЖЕННЫЙ КОД. КОД ГРЕЯ

Код Грея отличается от двоичного кода тем, что при переходе к следующей кодовой комбинации изменяется только один элемент кодовой комбинации (табл. 3).

Если при передаче сообщений с помощью кода Грея одновременно изменяется несколько разрядов кода, то это свидетельствует об ошибке, в этом состоит обнаруживающая способность кода Грея.

Код Грея, не взвешенный и непригоден для вычислительных операций без предварительного перевода в двоичный код.

Если обозначить: ai- двоичный код;

bi - Код Грея, то правило перехода из двоичного кода к коду Грея имеет вид:

bi =ai ai+1

где - суммирование по mod 2 ai+1 - ai - со сдвигом на один разряд вправо.

Пример:

1) ai = 1 1 1 0 1

1 1 1 0 1

bi = 1 0 0 1 1

2) ai = 1 1 1 1

1 1 1 1

bi = 1 0 0 0

Таблица 3
ЧислоДв. КодКод Грея

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0011

0010

0110

0111

0101

0100

1100

1101

1111

1110

1010

1011

1001

1000

Схема кодера Грея приведена на рис. 2. Как видно из кодер Грея реализуется с помощью регистра RG, сдвигового регистра SRG и сумматора по модулю 2 SM2.

Правила перехода из кода Грея в двоичный код. Существует несколько способов перехода.

1. Используется следующий алгоритм:

an-1 = bn-1;

ai = ai+1 bi .

где an-1- значение старшего разряда двоичного числа.


Пример 1. Дана запись числа кодом Грея bi= 10101 ®b4 b3 b2 b1 b0получить двоичную запись. Используя приведенные выше формулы, получим

a4 = b4= 1 ;

a3 = a4 b3=1 0 = 1;

a2 = a3 b2=1 1 = 0;

a1 = a2 b1=0 0 = 0;

a0 = a1 b0=0 1 = 1;

ai =a4 a3 a2 a1 a0= 11001


2. Переход осуществляется по алгоритму ai = - т. е. как сумма по модулю 2 всех предыдущих значений

Пример 2. Дана запись числа кодом Грея bi= 11001. При этом двоичная запись равна ai= 10101;

Правила перехода из двоичного кода и кода Грея к десятичной записи

Для двоичного кода:

Для кода Грея:

для нечетных “1” знак “+”, для четных “1” знак “-”.

Пример 3. Дана запись числа двоичным кодом ai = .

При этом десятичная запись равна

a10 = 1×25 + 1×24 + 1×22 +1×21 = 32+16+4+2 = 54.

Пример 4. Дана запись числа двоичным кодом ai =110110. Получить код Грея и преобразовать его в десятичную запись.

Получим код Грея


ai = 1 0 1 1 0

1 1 0 1 1 0

bi = 1 0 1 1 0 1.

Получим десятичную запись

b10 = 1×(26-1)- 1×(24-1)+ 1×(23-1)- 1×(21 -1) = 63-15+7-1=54.

Достоинство кода Грея: Простота перевода в двоичный код и обратно, а также к десятичной записи.

Применениекода Грея: Код Грея, чаще всего, используется для надежного перехода от аналогового представления информации к цифровой и обратно, т. е. в аналого-цифровых преобразователях (АЦП).


Список Литературы

1. Вернер М. Основы кодирования. — М.: Техносфера, 2004.

2. Зюко А.Г. , Кловский Д.Д., Назаров М.В., Финк Л.М. Теория передачи сигналов. М: Радио и связь, 2001 г. –368 с.

3. КнутДональд, Грэхем Роналд, Паташник Орен Конкретная математика. Основание информатики — М.: Мир; Бином. Лаборатория знаний, 2006. — С. 703.

4. Лидовский В.И. Теория информации. - М., «Высшая школа», 2002. – 120с.

5. Метрология и радиоизмерения в телекоммуникационных системах. Учебник для ВУЗов. / В.И.Нефедов, В.И. Халкин, Е.В. Федоров и др. – М.: Высшая школа, 2001 г. – 383с.

6. Рудаков А. Н. Числа Фибоначчи и простота числа 2127-1 // Математическое Просвещение, третья серия. — 2000. — Т. 4.

7. Стахов А.П. Коды золотой пропорции. –М.: Радио и Связь, 1984.

8. Цапенко М.П. Измерительные информационные системы. - . – М.: Энергоатом издат, 2005. - 440с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
143185
рейтинг
icon
3071
работ сдано
icon
1329
отзывов
avatar
Математика
Физика
История
icon
140650
рейтинг
icon
5850
работ сдано
icon
2647
отзывов
avatar
Химия
Экономика
Биология
icon
94648
рейтинг
icon
2019
работ сдано
icon
1266
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
52 997 оценок star star star star star
среднее 4.9 из 5
Новосибирский Государственный Педагогический Университет
Успешное исполнение поставленной задачи. Как заявлено, так и сделано. Рекомендую данного с...
star star star star star
НГПУ им. Минина
Евгения, спасибо огромное! Работа выполнена на высшем уровне, очень качественно и грамотно...
star star star star star
Санкт-Петербургский государственный архитектурно-строительный университет
Выполнено быстро, качественно, преподаватель оценил по высшему баллу. Рекомендую.
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Введение 1. Изучение государственного (муниципального) органа власти...

Отчет по практике, государственное и муниципальное управление

Срок сдачи к 2 июня

1 минуту назад
2 минуты назад
2 минуты назад

нужно решить только 1 задачу, которую скажет...

Решение задач, Налоги и налогообложение

Срок сдачи к 29 мая

3 минуты назад
4 минуты назад

водоснабжение и водоотведение

Курсовая, водоснабжение и водоотведение

Срок сдачи к 2 июня

4 минуты назад

написать курсовую работу по социальной работе с детьми с ограниченными...

Решение задач, социальная работа

Срок сдачи к 29 июня

5 минут назад

Мода в ссср

Эссе, история россии

Срок сдачи к 30 мая

6 минут назад

В программе AnyLogic решить: В системе передачи данных производится...

Лабораторная, Моделирование систем

Срок сдачи к 1 июня

6 минут назад

нужна только 1 часть из 6 часть №3

Диплом, мдк

Срок сдачи к 31 мая

7 минут назад

Реферат

Реферат, Учёт и контроль технологических процессов, строительство

Срок сдачи к 3 июня

8 минут назад

Требуется выполнить чертёж в приложении "Компас 3D"

Чертеж, начертательная геометрия и инженерная графика

Срок сдачи к 29 мая

8 минут назад

Срочно! Контрольная

Контрольная, Строительная механика

Срок сдачи к 29 мая

8 минут назад

Решить 15 вариант из сборника (с объяснениями решения: указаны формулы

Решение задач, Математика и статистика

Срок сдачи к 30 мая

11 минут назад

Назначение элементов

Диплом, машиностроение

Срок сдачи к 29 мая

11 минут назад

написать курсовую работу на тему "Инвестиции как источник...

Курсовая, Макроэкономика

Срок сдачи к 31 мая

11 минут назад

Решить лабораторную по физике.

Лабораторная, Физика

Срок сдачи к 1 июня

11 минут назад

Диктемный анализ

Другое, Английский язык

Срок сдачи к 31 мая

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно