Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Представление булевых функций в СКНФ

Тип Реферат
Предмет Математика
Просмотров
2165
Размер файла
399 б
Поделиться

Ознакомительный фрагмент работы:

Представление булевых функций в СКНФ

Курсовая работа

«Представление булевых функций в СКНФ»


Введение

В курсе дискретной математики изучаются функции, область определения которых – дискретное множество. Простейшим (но нетривиальным) таким множеством является множество, состоящее из двух элементов.

Теоретическая часть

В теории дискретных функциональных систем булевой функцией называют функцию типа , где – булево множество, а n – неотрицательное целое число, которое называют арностью или местностью функции. Элементы 0 (ноль) и 1 (единица) стандартно интерпретируют как истину и ложь, хотя в общем случае их смысл может быть любым. Элементы называют булевыми векторами. В случае n = 0 булева функция превращается в булеву константу.

Каждая булева функция арности n полностью определяется заданием своих значений на своей области определения, то есть на всех булевых векторах длины n. Число таких векторов равно 2n. Поскольку на каждом векторе функция может принимать значение либо 0, либо 1, количество всех n-арных булевых функций равно . То, что каждая булева функция задаётся конечным массивом данных, позволяет представлять их в виде таблиц. Такие таблицы носят название таблиц истинности и в общем случае имеют вид:

x1x2xnf(x1, x2,…, x1)
000f (0,0,…, 0)
100f (1,0,…, 0)
010f (0,1,…, 0)
110f (1,1,…, 0)
011f (0,1,…, 1)
111f (1,1,…, 1)

Нульарные функции

При n = 0 количество булевых функций сводится к двум, первая из них тождественно равна 0, а вторая 1. Их называют булевыми константами.

При n = 1 число булевых функций равно . Им соответствуют следующие таблицы истинности.


xg1 ()g2 (=)g3 (1)g4 (0)
01010
10110

Здесь:

g1 (x) – отрицание (обозначения: ),

g2 (x) – тождественная функция,

g3 (x) и g4 (x) – соответственно, тождественная истина и тождественная ложь.

Бинарные функции

При n = 2 число булевых функций равно . Им соответствуют следующие таблицы истинности.

xyf1 ()f2 ()f3 ()f4 ()f5 ()f6 ()f7 ()f8 ()
0000101111
0101010101
1001011001
1111101100
xyf9f10f11f12f13f14f15f16
0000110010
0101100110
1010011010
1100001110

Здесь:

f1 (x, y) – конъюнкция (обозначения: x&y, ),

f2 (x, y) – дизъюнкция (обозначение: ),

f3 (x, y) – эквивалентность (обозначения: ),

f4 (x, y) – исключающее «или» (сложение по модулю 2; обозначения: ),

f5 (x, y) – импликация от y к x (обозначения: ),

f6 (x, y) – импликация от x к y (обозначения: ),

f7 (x, y) – стрелка Пи́рса (функция Да́ггера, функция Ве́бба, антидизъюнкция; обозначение: ),

f8 (x, y) – штрих Ше́ффера (антиконъюнкция; обозначение: ),

f9 (x, y) – отрицание импликации f6 (x, y),

f10 (x, y) – отрицание импликации f5 (x, y),

f11 (x, y) = g1 (x),

f12 (x, y) = g1 (y),

f13 (x, y) = g2 (x),

f14 (x, y) = g2 (y),

f15 (x, y), f16 (x, y) – тождественная истина и тождественная ложь.

Дизъюнктивная нормальная форма (ДНФ)

Простой конъюнкцией, или конъюнктом, называется конъюнкция некоторого конечного набора переменных, или их отрицаний, причём каждая переменная встречается не более одного раза. Дизъюнктивной нормальной формой или ДНФ называется дизъюнкция простых конъюнкций. Например – является ДНФ.

Совершенной дизъюнктивной нормальной формой, или СДНФ относительно некоторого заданного конечного набора переменных называется такая ДНФ, у которой в каждую конъюнкцию входят все переменные данного набора, причём в одном и том же порядке. Например: .

Легко убедится, что каждой булевой функции соответствует некоторая ДНФ, и даже СДНФ. Для этого достаточно взять таблицу истинности этой функции и найти все булевы векторы, на которых её значение равно 1. Для каждого такого вектора строится конъюнкция , где . Если взять дизъюнкцию этих конъюнкций, то результатом очевидно будет СДНФ. Поскольку на всех булевых векторах её значения совпадают со значениями исходной функции, она будет СДНФ этой функции. Например, для импликации , результатом будет , что можно упростить до .

Конъюнктивная нормальная форма (КНФ)

Конъюнктивная нормальная форма (КНФ) определяется двойственно к ДНФ. Простой дизъюнкцией или дизъюнктом называется дизъюнкция одной или нескольких переменных или их отрицаний, причём каждая переменная входит в неё не более одного раза. КНФ – это конъюнкция простых дизъюнкций.

Совершенной конъюнктивной нормальной формой (СКНФ), относительно некоторого заданного конечного набора переменных, называется такая КНФ, у которой в каждую дизъюнкцию входят все переменные данного набора, причём в одном и том же порядке. Поскольку (С) КНФ и (С) ДНФ взаимодвойственны, свойства (С) КНФ повторяют все свойства (С) ДНФ, грубо говоря, «с точностью до наоборот».

КНФ может быть преобразована к эквивалентной ей ДНФ, путём раскрытия скобок по правилу:

которое выражает дистрибутивность конъюнкции относительно дизъюнкции. После этого, необходимо в каждой конъюнкции удалить повторяющиеся переменные или их отрицания, а также выбросить из дизъюнкции все конъюнкции, в которых встречается переменная вместе со своим отрицанием. При этом, результатом не обязательно будет СДНФ, даже если исходная КНФ была СКНФ. Точно также, можно всегда перейти от ДНФ к КНФ. Для этого следует использовать правило


выражающее дистрибутивность дизъюнкции относительно конъюнкции. Результат нужно преобразовать способом, описанным выше, заменив слово «конъюнкция» на «дизъюнкция» и наоборот.

Алгоритм

Алгоритм получения СКНФ:

1. Получить таблицу истинности для определенного количества переменных;

2. Заполнить значения функции для каждого из наборов таблицы истинности;

3. Отметить те строки таблицы истинности, на которых функция приняла значение 0;

4. Выписать для каждой отмеченной строки дизъюнкцию всех переменных следующим образом: если значение некоторой переменной в данной строке =0, то в дизъюнкцию включают саму переменную, если =1, то ее отрицание;

5. Все полученные дизъюнкции связать в конъюнкцию;


Листингпрограммы

#include <iostream.h>

#include <conio.h>

int OutputABC (int a, int b, int c, int x, int y)

{

cout << «(»;

if (a == 1) cout << «~Av»; else cout << «Av»;

if (b == 1) cout << «~Bv»; else cout << «Bv»;

if (c == 1) cout << «~C»; else cout << «C»;

cout <<»)»;

if (y<x-1) cout << «*»,

y++;

return(y);

};

void main ()

{const int K=8; const int N=3;

int i, j, b[N] [K], x(0), y(0);

i=0;

for (j=0; j<K; j++)

{

cout << «Vvedite znachenie funkcii na dannom nabore» << endl;

cin >> b[0] [j];

while (! (b[0] [j] == 1 || b[0] [j] == 0))

cout << endl << «Fatal error!!! Please input only 0 or 1» << endl, cin >> b[0] [j];

}

cout << endl;

i=1;

for (j=0; j<K; j+=2)

b[i] [j]=0;

for (j=1; j<K; j+=2)

b[i] [j]=1;

i=2;

for (j=0; j<K; j+=4)

b[i] [j]=0;

for (j=1; j<K; j+=4)

b[i] [j]=0;

for (j=2; j<K; j+=4)

b[i] [j]=1;

for (j=3; j<K; j+=4)

b[i] [j]=1;

i=3;

for (j=0; j<4; j++)

b[i] [j]=0;

for (j=4; j<K; j++)

b[i] [j]=1;

for (j=0; j<K; j++)

if (b[0] [j] == 0) x++;

cout<< «A B C fnn»;

cout<<«0 0 0 «<<b[0] [0]<<»n0 0 1 «<<b[0] [1]<<»n0 1 0 «<<b[0] [2]

<<»n0 1 1 «<<b[0] [3]<<»n1 0 0 «<<b[0] [4]<<»n1 0 1 «<<b[0] [5]

<<»n1 1 0 «<<b[0] [6]<<»n1 1 1 «<<b[0] [7]<<»nn»;

cout<< «F=»;

for (j=0; j<K; j++)

if (b[0] [j] == 0)

y=OutputABC (b[3] [j], b[2] [j], b[1] [j], x, y);

getch();

}

Тестирование программы

входные данные:

результат:

входные данные:

результат:

Заключение

булева функция программа переменная

В курсовой работе был реализован алгоритм представления булевых функций в СКНФ.

По данному алгоритму на языке С++ была написана программа, результат которой был продемонстрирован.


Список использованной литературы

1. Яблонский С.В. Введение в дискретную математику. – М.: Наука. – 1986

2. Н.А. Ахметова, З.М. Усманова Дискретная Математика Функции алгебры логики учебное электронное издание – Уфа – 2004


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно