Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Метод квадратных корней для симметричной матрицы при решении систем линейных алгебраических уравнений

Тип Реферат
Предмет Математика
Просмотров
880
Размер файла
57 б
Поделиться

Ознакомительный фрагмент работы:

Метод квадратных корней для симметричной матрицы при решении систем линейных алгебраических уравнений

Министерство образования и науки Российской Федерации

Новосибирский государственный технический университет

Кафедра экономической информатики

Курсовая работа

по дисциплине «Численные методы»

на тему: «Метод квадратных корней для симметричной матрицы при решении СЛАУ»

Новосибирск, 2010


Содержание

Введение

1. Математическая постановка задачи

2. Описание программного обеспечения

3. Описание тестовых задач

4. Анализ результатов. Выводы

Заключение

Список использованной литературы


Введение

В данной работе мы будем исследовать метод квадратных корней для симметричной матрицы при решении систем линейных алгебраических уравнений (СЛАУ).

В жизни, очень часто приходится описывать состояние различных объектов, в том числе и экономических с помощью математических моделей. После того, как объект описан такой моделью, очень часто необходимо найти его состояние равновесия.

Именно тогда, чтобы найти это состояние, приходится решать систему алгебраических уравнений. В нашем случае система состоит из n линейных уравнений с n неизвестными, и ее можно описать так:

Также данную систему можно записать и в матричном виде:

Тогда мы будем иметь матрицу коэффициентов А:

,

столбец свободных членов уравнений f:


,

и столбец неизвестных х:

.

Чтобы данная СЛАУ имела единственное решение, нужно, чтобы определитель матрицы коэффициентов А не был равен нулю (det(A))¹0.

Данную систему можно решить многими методами. Например, методом Гаусса. Решение этой системы методом Гаусса потребует выполнить

действий,

где n – число неизвестных в уравнении. А это довольно таки трудоемко, особенно при больших порядках числа n.

Еще одним точным методом для решения данных СЛАУ является рассматриваемый в данной работе метод квадратных корней для симметричной матрицы А.

Изучать данный метод мы будем следующим образом. Сначала рассмотрим математическую постановку задачи для метода квадратных корней при решении СЛАУ. В данном разделе будет полностью описана математическая модель метода. Затем рассматривается разработанная реализация данного метода в среде MatLab 7.0. После того, как метод будет реализован, можно провести анализ точности этого метода. Анализ будет основываться на исследовании влияния мерности матрицы А, ее обусловленности, разреженности на точность полученного решения. По результатам исследования будет приведен график зависимости точности полученного решения от мерности матрицы А.

метод решение корень симметричная матрица


1. Математическая постановка задачи

Метод квадратных корней используется для решения линейной системы вида Ах=f(1.1), в которой матрица А является симметричной, т.е. аij=aji , где (i, j = 1, 2, …, n).

Данный метод является более экономным и удобным по сравнению с решением систем общего вида. Решение системы осуществляется в два этапа.

Прямой ход. Представим матрицу А в виде произведения двух взаимно транспонированных треугольных матриц:

А = Т¢ Т, (1.2)

где , а .

Перемножая матрицы T¢ и T и приравнивая матрице A, получим следующие формулы для определения tij:

(1.3)

После того, как матрица Т найдена, систему (1.1) заменяем двумя эквивалентными ей системами с треугольными матрицами


T¢y = b, Tx = y. (1.4)

Обратный ход. Записываем в развернутом виде системы (1.4):

(1.5)

(1.6)

И из этих систем (1.5) и (1.6) последовательно находим

(1.7)

При вычислениях применяется обычный контроль с помощью сумм, причем при составлении суммы учитываются все коэффициенты соответствующей строки.

Заметим, что при действительных aij могут получиться чисто мнимые tij. Метод применим и в этом случае.

Метод квадратных корней дает большой выигрыш во времени по сравнению с другими методами (например, методом Гаусса), так как, во-первых, существенно уменьшает число умножений и делений (почти в два раза для больших n), во-вторых, позволяет накапливать сумму произведений без записи промежуточных результатов.

Всего метод квадратных корней требует

операций умножения и деления (примерно в два раза меньше, чем метод Гаусса), а также n операций извлечения корня.

2. Описание программного обеспечения

Метод квадратных корней был реализован через функцию function [e,x]=mkk(a,f) , с входными переменными а и f и выходными e и х, где

а – матрица коэффициентов А,

f – столбец свободных членов,

х – столбец найденных решений,

е – столбец ошибок.

Столбец ошибок вычисляется, как Е=А*х-f.

Текст функции на языке MatLab:

function [e,x]=mkk(a,f)

f=f'; %столбец f переводим в строку

n=size(a,1); % вычисляем мерность матрицы А

if (a==a')

if (det(a)~=0) % проверяем, чтобы система имела единственное решение

if (size(f',1)==n) %проверяем соответствует ли мерность матрицы А мерности вектора f

t=zeros(n); %создаем матрицу элементов T и заполняем ее нулями

t(1,1)=sqrt(a(1,1)); % 1.3

for k=2:n

t(1,k)=a(1,k)/t(1,1);

end

for j=2:n

for i=2:n

if (i==j)

c=0;

for k=1:(i-1)

c=c+t(k,i)^2;

end

t(i,i)=sqrt(a(i,i)-c);

else

if (i<j)

c=0;

for k=1:(i-1)

c=c+t(k,i)*t(k,j);

end

t(i,j)=(a(i,j)-c)/t(i,i);

end

end

end

end

y=zeros(n,1); %1.7 создаемстолбецу

y(1)=f(1)/t(1,1);

for i=2:n

c=0;

for k=1:(i-1)

c=c+t(k,i)*y(k);

end

y(i)=(f(i)-c)/t(i,i);

end

x=zeros(n,1); %создаем столбец точных решений

e=zeros(n,1); % создаем столбец ошибок

x(n)=y(n)/t(n,n); %1.8 вычисляем вектор Х

for i=(n-1):-1:1

c=0;

for k=(i+1):n

c=c+t(i,k)*x(k);

end

x(i)=(y(i)-c)/t(i,i);

e=a*x-f';

end

else

error('Внимание! Ошибка! Размерность матрицы А не соответствует размерности вектора F');

end

else

error('Внимание! Ошибка! Определитель матрицы А равен 0')

end

else

f=f*a';

a=a*a';

if (det(a)~=0) % проверяем, чтобы система имела единственное решение

ifsize(f',1)==n%проверяем соответствует ли мерность матрицы А мерности вектора f

t=zeros(n); %создаем матрицу элементов T и заполняем ее нулями

t(1,1)=sqrt(a(1,1)); % 1.3

for k=2:n

t(1,k)=a(1,k)/t(1,1);

end

for j=2:n

for i=2:n

if (i==j)

c=0;

for k=1:(i-1)

c=c+t(k,i)^2;

end

t(i,i)=sqrt(a(i,i)-c);

else

if (i<j)

c=0;

for k=1:(i-1)

c=c+t(k,i)*t(k,j);

end

t(i,j)=(a(i,j)-c)/t(i,i);

end

end

end

end

y=zeros(n,1);

y(1)=f(1)/t(1,1);

for i=2:n

c=0;

for k=1:(i-1)

c=c+t(k,i)*y(k);

end

y(i)=(f(i)-c)/t(i,i);

end

x=zeros(n,1);

x(n)=y(n)/t(n,n);

for i=(n-1):-1:1

c=0;

for k=(i+1):n

c=c+t(i,k)*x(k);

end

x(i)=(y(i)-c)/t(i,i);

end

else

error('Внимание! Ошибка! Размерность вектора F не соответствует размерности матрицы А');

end

else

error('Внимание! Ошибка! Определитель матрицы А равен 0');

end

end

3. Описание тестовых задач

После того, как функция была разработана, для ее отладки была составлена программа, где задавались матрица А, вектор fи откуда вызывалась написанная функция.

Программа имеет вид:

a=[1 0 0; 0 1 0; 0 0 1];

f=[7;8;9];

[e,x]=mkk(a,f)

Решение для данной программы выдано такое:

e =

0

0

0

x =

7

8

9

Как видим, решение правильное.

Начнем исследование метода квадратных корней. Для начала исследуем влияние мерности матрицы А на точность решения.

Для этого будем последовательно решать СЛАУ, каждый раз увеличивая мерность А. Для этого составим такую программу, которая

а) решит четыре СЛАУ с разными мерностями матрицы А,

б) посчитает четыре точности полученного решения по формуле E1=max |Ei|,

в) посчитает четыре точности полученного решения по формуле

,

в которых i – количество решенных уравнений

г) построит два графика зависимости точностей полученного решения от мерности матрицы А.

Текст программы:

e1=0;

e2=0;

a=[1 0.42;.42 1]

f=[0.3;0.5]

[e,x]=mkk(a,f)

e1=max(abs(e))

e2=sqrt(sum(power(e,2)))

a=[1 0.42 .54;.42 1 .32; .54 .32 1;]

f=[0.3;0.5;.7]

[e,x]=mkk(a,f)

e1=[e1 max(abs(e))]

e2=[e2 sqrt(sum(power(e,2)))]

a=[1 0.42 .54 .66;.42 1 .32 .44; .54 .32 1 .22; .66 .44 .22 1]

f=[0.3;0.5;.7;.9]

[e,x]=mkk(a,f)

e1=[e1 max(abs(e))]

e2=[e2 sqrt(sum(power(e,2)))]

a=[1 0.42 .54 .66 .53;.42 1 .32 .44 .45; .54 .32 1 .22 .41; .66 .44 .22 1 .25; .53 .45 .41 .25 1;]

f=[0.3;0.5;.7;.9;.6]

[e,x]=mkk(a,f)

e1=[e1 max(abs(e))]

e2=[e2 sqrt(sum(power(e,2)))]

mernost=[2 3 4 5];

plot(mernost,e1);

pause;

plot(mernost,e2);

pause

Результат работы программы:

>> head5

a =

1.0000 0.4200

0.4200 1.0000

f =

0.3000

0.5000

e =

0

0

x =

0.1093

0.4541

e1 =

0

e2 =

0

a =

1.0000 0.4200 0.5400

0.4200 1.0000 0.3200

0.5400 0.3200 1.0000

f =

0.3000

0.5000

0.7000

e =

1.0e-016 *

0.5551

0

0

x =

-0.2405

0.3737

0.7103

e1 =

1.0e-016 *

0 0.5551

e2 =

1.0e-016 *

0 0.5551

a =

1.0000 0.4200 0.5400 0.6600

0.4200 1.0000 0.3200 0.4400

0.5400 0.3200 1.0000 0.2200

0.6600 0.4400 0.2200 1.0000

f =

0.3000

0.5000

0.7000

0.9000

e =

1.0e-015 *

-0.0555

0

-0.2220

0

x =

-1.2578

0.0435

1.0392

1.4824

e1 =

1.0e-015 *

0 0.0555 0.2220

e2 =

1.0e-015 *

0 0.0555 0.2289

a =

1.0000 0.4200 0.5400 0.6600 0.5300

0.4200 1.0000 0.3200 0.4400 0.4500

0.5400 0.3200 1.0000 0.2200 0.4100

0.6600 0.4400 0.2200 1.0000 0.2500

0.5300 0.4500 0.4100 0.2500 1.0000

f =

0.3000

0.5000

0.7000

0.9000

0.6000

e =

1.0e-015 *

0.0555

0.2220

-0.1110

-0.3331

0

x =

-1.6362

-0.1885

0.9761

1.6642

0.7358

e1 =

1.0e-015 *

0 0.0555 0.2220 0.3331

e2 =

1.0e-015 *

0 0.0555 0.2289 0.4191

Построенные графики для оценки точности решения:

Для E1=max |Ei|,


Для

Как видим из решения, выданного программой, а также из графиков, ошибка растет с увеличением мерности матрицы А, а точность решения, как следствие уменьшается.

Теперь исследуем влияние разреженности матрицы А на точность решения. Для этого немного модифицируем программу, использованную для исследования влияния мерности матрицы А на точность решения: изменим в ней СЛАУ для решения. На каждом шаге будем увеличивать количество нулевых элементов в матрице.

Текст программы:

e1=0;

e2=0;

a=[1 0.42 .54 .66 .53;.42 1 .32 .44 .45; .54 .32 1 .22 .41; .66 .44 .22 1 .25; .53 .45 .41 .25 1;]

f=[0.3;0.5;.7;.9;.6]

[e,x]=mkk(a,f)

e1=max(abs(e))

e2=sqrt(sum(power(e,2)))

a=[1 0 .54 0 .53;0 1 .32 .44 .45; .54 .32 1 .22 .41; 0 .44 .22 1 .25; .53 .45 .41 .25 1;]

f=[0.3;0.5;.7;.9;.6]

[e,x]=mkk(a,f)

e1=[e1 max(abs(e))]

e2=[e2 sqrt(sum(power(e,2)))]

a=[1 0 .54 0 .53;0 1 .32 .44 .45; .54 .32 1 .22 .41; 0 .44 .22 1 0; .53 .45 .41 0 1;]

f=[0.3;0.5;.7;.9;.6]

[e,x]=mkk(a,f)

e1=[e1 max(abs(e))]

e2=[e2 sqrt(sum(power(e,2)))]

a=[1 0 .54 0 0;0 1 0 .44 .45; .54 0 1 .22 0; 0 .44 .22 1 0; 0 .45 0 0 1;]

f=[0.3;0.5;.7;.9;.6]

[e,x]=mkk(a,f)

e1=[e1 max(abs(e))]

e2=[e2 sqrt(sum(power(e,2)))]

mernost=[2 3 4 5];

plot(mernost,e1);

pause;

plot(mernost,e2);

pause

Результат работы программы:

a =

1.0000 0.4200 0.5400 0.6600 0.5300

0.4200 1.0000 0.3200 0.4400 0.4500

0.5400 0.3200 1.0000 0.2200 0.4100

0.6600 0.4400 0.2200 1.0000 0.2500

0.5300 0.4500 0.4100 0.2500 1.0000

f =

0.3000

0.5000

0.7000

0.9000

0.6000

e =

1.0e-015 *

0.0555

0.2220

-0.1110

-0.3331

0

x =

-1.6362

-0.1885

0.9761

1.6642

0.7358

e1 =

3.3307e-016

e2 =

4.1910e-016

a =

1.0000 0 0.5400 0 0.5300

0 1.0000 0.3200 0.4400 0.4500

0.5400 0.3200 1.0000 0.2200 0.4100

0 0.4400 0.2200 1.0000 0.2500

0.5300 0.4500 0.4100 0.2500 1.0000

f =

0.3000

0.5000

0.7000

0.9000

0.6000

e =

1.0e-015 *

0.0555

0.1110

0.2220

0.1110

0.1110

x =

-0.1810

-0.1718

0.5355

0.7673

0.3618

e1 =

1.0e-015 *

0.3331 0.2220

e2 =

1.0e-015 *

0.4191 0.2989

a =

1.0000 0 0.5400 0 0.5300

0 1.0000 0.3200 0.4400 0.4500

0.5400 0.3200 1.0000 0.2200 0.4100

0 0.4400 0.2200 1.0000 0

0.5300 0.4500 0.4100 0 1.0000

f =

0.3000

0.5000

0.7000

0.9000

0.6000

e =

1.0e-015 *

-0.0555

-0.0555

0

0.1110

0

x =

-0.4156

-0.4724

0.5213

0.9932

0.8192

e1 =

1.0e-015 *

0.3331 0.2220 0.1110

e2 =

1.0e-015 *

0.4191 0.2989 0.1360

a =

1.0000 0 0.5400 0 0

0 1.0000 0 0.4400 0.4500

0.5400 0 1.0000 0.2200 0

0 0.4400 0.2200 1.0000 0

0 0.4500 0 0 1.0000

f =

0.3000

0.5000

0.7000

0.9000

0.6000

e =

1.0e-015 *

0

0

0

0

-0.1110

x =

0.0374

-0.1969

0.4863

0.8797

0.6886

e1 =

1.0e-015 *

0.3331 0.2220 0.1110 0.1110

e2 =

1.0e-015 *

0.4191 0.2989 0.1360 0.1110

ДляE1=max |Ei|,

Для


Как видим из решения и графиков, величина ошибок уменьшается, а точность найденного решения увеличивается с увеличением количества нулевых элементов в матрице А. Это связано с тем, что увеличение числа нулевых элементов постепенно уменьшает число ненулевых элементов задействованных в вычислениях.

Теперь исследуем влияние обусловленности матрицы А на точность получаемого решения. Для этого в третий раз модифицируем нашу программу. Теперь мы будем брать обусловленные матрицы, с каждым шагом увеличивая их размерность.

Текст программы:

e1=0;

e2=0;

a=[500 501;501 500]

f=[15000;16000]

[e,x]=mkk(a,f)

e1=max(abs(e))

e2=sqrt(sum(power(e,2)))

a=[500 501 -503;501 500 499;-503 499 500]

f=[15000;16000;18000]

[e,x]=mkk(a,f)

e1=[e1 max(abs(e))]

e2=[e2 sqrt(sum(power(e,2)))]

a=[500 501 -503 500;501 500 499 -501;-503 499 500 502;500 -501 502 500]

f=[15000;16000;18000;16000]

[e,x]=mkk(a,f)

e1=[e1 max(abs(e))]

e2=[e2 sqrt(sum(power(e,2)))]

a=[500 501 -503 500 499;501 500 499 -501 500;-503 499 500 502 -501;500 -501 502 500 -500; 499 500 -501 -500 500]

f=[15000;16000;18000;16000;17000]

[e,x]=mkk(a,f)

e1=[e1 max(abs(e))]

e2=[e2 sqrt(sum(power(e,2)))]

mernost=[2 3 4 5];

plot(mernost,e1);

pause;

plot(mernost,e2);

pause

Результат работы программы:

>> head5

a =

500 501

501 500

f =

15000

16000

e =

1.0e-010 *

-0.2910

0.5821

x =

515.4845

-484.5155

e1 =

5.8208e-011

e2 =

6.5078e-011

a =

500 501 -503

501 500 499

-503 499 500

f =

15000

16000

18000

e =

1.0e-010 *

0.0182

0.0364

0.1455

x =

-2.0239

32.9970

1.0330

e1 =

1.0e-010 *

0.5821 0.1455

e2 =

1.0e-010 *

0.6508 0.1511

a =

500 501 -503 500

501 500 499 -501

-503 499 500 502

500 -501 502 500

f =

15000

16000

18000

16000

e =

1.0e-008 *

0

0

-0.1120

0.0997

x =

14.5050

16.5505

17.4961

16.5125

e1 =

1.0e-008 *

0.0058 0.0015 0.1120

e2 =

1.0e-008 *

0.0065 0.0015 0.1500

a =

500 501 -503 500 499

501 500 499 -501 500

-503 499 500 502 -501

500 -501 502 500 -500

499 500 -501 -500 500

f =

15000

16000

18000

16000

17000

e =

1.0e-010 *

-0.0364

0.0364

0.8367

-0.9459

0.1091

x =

33.0693

35.1332

-1.0682

-2.1077

-37.3144

e1 =

1.0e-008 *

0.0058 0.0015 0.1120 0.0095

e2 =

1.0e-008 *

0.0065 0.0015 0.1500 0.0127

ДляE1=max |Ei|,

Для


В целом обусловленность матрицы А дает высокую точность решения, но по выбранным в данной работе системам трудно судить о влиянии мерности обусловленной матрицы А на точность решения.

4. Анализ результатов. Выводы

По исследованию можно сказать следующее. Точность решения СЛАУ методом квадратных корней для симметричной матрицы зависит от многих параметров, как то: мерность матрицы А, разреженность матрицы А, обусловленность матрицы А. Точность зависит от этих параметров как по отдельности, так и в комбинации. Можно также сказать, что точность решения сильно зависит от количества округлений во время решения и, как следствие собственно количества вычислений, которые необходимо произвести, чтобы решить СЛАУ методом квадратных корней. Было отмечено на этапе отладки программы, что, чем ближе корни системы к целым числам, тем меньше ошибка, тем выше точность.


Заключение

В данной курсовой работе был исследован метод квадратных корней для симметричной матрицы - один из методов решения систем линейных алгебраических уравнений. Этим методом можно решать системы вида Ax = f, в которых матрица A – симметричная.

Также в данной работе были проанализированы разного рода параметры матрицы А: мерность, обусловленность, разряженность, и их влияние на точность полученного решения. В целом метод дает достаточно точные решения и может быть использован при поиске состояний равновесия в экономических моделях.


Список использованной литературы

1. Волков Е.А., Численные методы.- М.: «Наука», 1982.

2. Калиткин Н.Н. Численные методы.- М.: Наука,1978.

3. Сарычева О.М. Численные методы в экономике / О.М.Сарычева.-Новосибирск, 1995.- 67 стр.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно