Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Математичні методи представлення знань

Тип Реферат
Предмет Математика
Просмотров
1997
Размер файла
120 б
Поделиться

Ознакомительный фрагмент работы:

Математичні методи представлення знань

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний університет “Львівська політехніка”

Інститут Комп’ютерних наук та інформаційних технологій

Кафедра автоматизованих систем управління

Лабораторна робота № 5-6

з дисципліни

“Математичні методи представлення знань”

на тему:

«Обчислення означених інтегралів»

Виконав:

студент групи КН-29

Коцуба О.

Прийняв:

Биненко Б. І.

Львів – 2011


Обчислення означених інтегралів

Мета роботи: вивчити методи наближених обчислень і запрограмувати алгоритми обчислення означених інтегралів .

Порядок роботи:

1. Попереднє опрацювання теоретичного матеріалу.

2. Отримання допуску до виконання лабораторної роботи.

3. Опрацювання типового навчального завдання (прикладів).

4. Створення проекту для виконання індивідуального завдання.

5. Оформити звіт для захисту лабораторної роботи за зразком:

· назва роботи;

· мета роботи;

· порядок роботи;

· короткі теоретичні відомості;

· алгоритм розв’язування задачі;

· тексти відповідних модулів проекту;

· аналіз отриманих результатів та висновки.

6. Захист лабораторної роботи.

Короткі теоретичні відомості

1. Формули прямокутників.

Нехай на відрізку задана неперервна функція . Потрібно обчислити інтеграл

Розіб’ємо відрізок на n рівних частин точками , i=0,1,…n-1, довжина кожної з яких дорівнює . Через позначимо значення функції в точках і складемо суми

або

Кожна з цих сум є інтегральною сумою для на відрізку і тому наближено виражають означений інтеграл:

(1)

(1/)

Ці формули називаються формулами прямокутників. Із рис. 1 видно, що якщо додатна і зростаюча функція, то формула (1) відображає площу ступінчатої фігури, що складена із “ внутрішніх” прямокутників, а формула (1/) – площу фігури, що складена із “зовнішніх” прямокутників.

Похибка методу прямокутників дається формулою (2):

(2)

формула прямокутник лагранж функція

Похибка при цьому буде тим меншою, чим більше число n (тобто чим менший крок поділу). Зауважимо, що формули прямокутників дають точні результати для багаточленів першого степеня.

2. Формула трапецій.

Очевидно, що можна отримати більш точне значення інтеграла, якщо дану криву замінити не ступінчатою лінією, як це мало місце у формулі прямокутників, а вписаною ламаною (рис.2). Тоді площа криволінійної трапеції, обмеженої лініями і заміниться площами трапецій, обмежених зверху хордами Оскільки площа

Рис.1 Рис.2

першої трапеції дорівнює другої – і т.д.,

то

або

(3)

Формула (3) називається формулою трапецій. Число n вибирається довільним, але чим більшим це число буде, а значить, крок меншим, тим з більшою точністю сума в правій частині наближеної рівності (3) буде давати значення інтегралу.

3. Формула парабол (Сімпсона).

Метод Сімпсона найпоширеніший і простіше застосовний для програмування. Його суть полягає в наближенні підінтегральної функції відрізками парабол.

Отже, розглянемо спочатку інтеграл , де – парабола; ,, – деякі параметри (або числа).

Тоді

Нехай тепер маємо інтеграл , де - неперервна на інтервалі функція. Якщо інтервал розбити на п рівних частинок , i=0,1,…n-1,, то заданий інтеграл І можна записати так:

Якщо на кожному з інтегралів для проміжків функцію замінимо параболами , що проходять через точки ,то одержимо

Через те, що, формула матиме вигляд:

або

(4)

Формула (4) називається формулою парабол або Сімпсона. Доведено, що похибка обчислень за формулою Сімпсона є такою:

(5)

Проте, цією оцінкою похибки можна користуватись, якщо є хоча б чотири рази диференційовною. Але, якщо навіть чотири рази диференційовна, то часто оцінка четвертої похідної може виявитись досить складною. Тому на практиці переважно користуються таким методом: обчислюють інтеграл, розділяючи інтервал, заданий границями інтегрування, один раз на n рівних частин, а другий раз на т частин. Якщо одержані двоє значень інтеграла мало відрізняються, то результат можна вважати прийнятним. Порівнюючи їх можна оцінити і точність обчислень.

Приклад. Обчислити з точністю до 0,001 інтеграл

Р о з в ’ я з у в а н н я. За формулою (4) маємо:

при при

-0,50,0000-0,50,000000,050,0371
-0,4-0,1203-0,45-0,09460,100,0772
-0,3-0,1303-0,40-0,12030,150,1200
-0,2-0,1081-0,35-0,13040,200,1652
-0,1-0,630-0,30-0,13030,250,2122
00,0000-0,25-0,12040,300,2607
0,10,0772-0,20-0,10810,350,3103
0,20,1652-0,15-0,08810,400,3610
0,30,2607-0,10-0,06300,450,4121
0,40,36098-0,05-0,03350,500,4637
0,50,463650,000,0000

Отже,

.


Нехай деяка функціяf(x) задана в вузлах інтерполяції:

(i=1,2,3.,n) на відрізку [а,b] таблицею значень: .

Потрібно знайти значення інтегралу .

Спершу складемо інтерполяційний багаточлен Лагранжа:

Для рівновіддалених вузлів інтерполяційний багаточлен має вигляд:

де q=(x-x0) /h – крок інтерполяції, замінимо підінтегральну функцію f(x) інтерполяційним багаточленом Лагранжа:

Поміняємо знак підсумовування і інтеграл і винесемо за знак інтеграла постійні елементи:

Оскільки dp=dx/h, то, замінивши межі інтеграції, маємо:


Для рівновіддалених вузлів інтерполяції на відрізку [а,b] величина крок визначається як h=(b-a)/n. Представивши цей вираз для h у формулу (4) і виносячи (b-a) за знак суми, отримаємо:

Покладемо, що

де i=0,1,2.,n; Числа називають коефіцієнтами Ньютона-Kотеса. Ці коефіцієнти не залежать від вигляду f(x), а є функцією тільки по n. Тому їх можна обчислити заздалегідь. Остаточна формула виглядає так:

Формула трьох восьмих:

Якщо в формулі Ньютона-Котеса взяти n = 3, тобто функцію f(x) замінити інтерполяційним багаточленом третього степеня, побудованим за значення функції f(x) у точках x0=a, x1=a+h, x2=a+2h, x3=b, h=(b-a )/3. то одержимо таку квадратурну формулу:


де

Ця квадратурна формула називається малою квадратурною формулою трьох восьмих. Використовуючи цю формулу, легко записати велику квадратурну формулу трьох восьмих.

Завдання

Обчислити інтеграл методом прямокутників, трапецій, парабол, трьох восьмих, Монте-Карло оцінити абсолютну та відносну похибку обчислення :

А) заданий інтеграл обчислити наближено та точно.

B) заданий інтеграл обчислити наближено.

Варіант 1

1.

2.

3.

Варіант 2

1.

2.


3.

Варіант 3

1.

2.

3.

Варіант 4

1.

2.

3.

Варіант 5

1.

2.

3.

Варіант 6


1.

2.

3.

Варіант 7

1.

2.

3.

Варіант 8

1.

2.

3.

Варіант 9

1.

2.

3.

Варіант 10

1.

2.

3.


Рекомендована література:

1. Цегелик Г.Г. Чисельні методи: Підручник. – Львів: Видавничий центр ЛНУ ім. І. Франка, 2004. – 408 с.

2. Коссак О., Тумашова О., Коссак О. Методи наближених обчислень: Навч. посіб. – Львів: Бак, 2003. – 168 с.

3. Анджейчак І.А., Федю Є.М., Анохін В.Є. і ін. Практикум з обчислювальної математики. Основні числові методи. Частина І. – Навч. посіб. Львів: Вид-во ДУ «Львівська політехніка», 2000. – 100 с.

4. Дудикевич А.Т., Левицька С.М., Шахно С.М. Практична реалізація методів розв’язування нелінійних рівнянь і систем: Навч.-метод. посібн. – Львів: ВЦ ЛНУ ім.. І.Франка, 2007. – 78 с.

5. Паранчук Я.С. та ін. Алгоритмізація, програмування, числові та символьні обчислення в пакеті MathCAD. – Навч. посіб. / Я.С. Паранчук, А.В. Маляр, Р.Я. Паранчук, І.Р. Головач. – Львів: Вид-во Львівської політехніки, 2008. – 164 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 096 оценок star star star star star
среднее 4.9 из 5
им. С.Ю.Витте
Работа выполнена досрочно, содержание по существу, маленький недочет был исправлен. Спасибо!
star star star star star
БПТ
Обращался к Елене Александровне второй раз Всё очень здорово и оперативно сделанно, без за...
star star star star star
"КрасГАУ"
Заказываю в первый раз у Евгения , и остался максимально доволен , всё чётко !)
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решение задач по предмету «Математика»

Решение задач, Математика

Срок сдачи к 29 дек.

1 минуту назад

Отчет с выполнением заданий

Решение задач, Отчет, бух учет

Срок сдачи к 25 дек.

4 минуты назад

Расчет параметров участка электроэнергетической системы

Решение задач, Электрические системы, электроника, электротехника

Срок сдачи к 8 янв.

4 минуты назад
4 минуты назад

Сделать курсач по методике

Курсовая, Электротехника

Срок сдачи к 26 дек.

5 минут назад

Психология безопасности труда

Реферат, Русский язык и культура речи

Срок сдачи к 29 дек.

7 минут назад

Сделать реферат и презентацию

Презентация, Биомеханика

Срок сдачи к 25 дек.

7 минут назад

написать курсовую работу по уголовному праву

Курсовая, Уголовное право

Срок сдачи к 25 дек.

7 минут назад

Начертить 12 чертежей

Чертеж, Начертательная геометрия

Срок сдачи к 9 янв.

8 минут назад

Феномен успеха и успешность в профессиональном развитии

Реферат, Психология

Срок сдачи к 28 дек.

9 минут назад

В файле прикреплен пример выполнения задания

Контрольная, Криминология

Срок сдачи к 27 дек.

9 минут назад

9-11 страниц. правовые основы военной реформы в ссср в 20-е гг

Реферат, История государства и права России

Срок сдачи к 26 дек.

10 минут назад

Выполнить реферат. История Англии. Е-01554

Реферат, Английский язык

Срок сдачи к 26 дек.

10 минут назад

Составить Проект массового взрыва

Контрольная, Взрывное дело, горное дело

Срок сдачи к 8 янв.

12 минут назад

Термодинамика

Решение задач, Термодинамика

Срок сдачи к 26 дек.

12 минут назад

Нужен реферат, объем 15-20 страниц

Реферат, Безопасность в техносфере

Срок сдачи к 5 янв.

12 минут назад

Выполнить реферат. История Англии. Е-01554

Реферат, История

Срок сдачи к 26 дек.

12 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно