Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Доверительный интервал. Проверка статистических гипотез

Тип Реферат
Предмет Математика
Просмотров
457
Размер файла
105 б
Поделиться

Ознакомительный фрагмент работы:

Доверительный интервал. Проверка статистических гипотез

Доверительный интервал.

Проверка статистических гипотез


1. Доверительный интервал

Точечные оценки являются приближенными, так как они указывают точку на числовой оси, в которой должно находиться значение неизвестного параметра. Однако оценка является приближенным значением параметра генеральной совокупности, которая при разных выборках одного и того же объема будет принимать разные значения, поэтому в ряде задач требуется найти не только подходящее значение параметра а, но и определить его точность и надежность.

Для этого в математической статистике используется два понятия – доверительный интервал и доверительная вероятность. Пусть для параметра а из опытных данных получена несмещенная оценка Требуется определить возможную при этом величину ошибки и вероятность того, что оценка не выскочит за пределы этой ошибки (надежность).

Зададимся некоторой вероятностью b (например, b = 0,99) и найдем такое значение e > 0, для которого

Представим это выражение в виде

Это значит, что с вероятностью b точное значение параметра а находится в интервале le

le

Здесь параметр а – неслучайная величина, а интервал le является случайным, так как - случайная величина. Поэтому вероятность b лучше толковать, как вероятность того, что случайный интервал le накроет точку а. Интервал leназывают доверительным интервалом, а вероятность b - доверительной вероятностью (надежностью).

Пример. Если при измерении какой-то величины Х указывается абсолютная погрешность Dх, то это, по существу, означает, что погрешность измерения, являясь случайной величиной, равномерно распределена в интервале (-Dх, Dх) и где Х* - измеренная величина, а х – ее точное значение. Здесь b = 1, e = Dх и le = (x*- Dх, x* + Dх).

1.1 Доверительный интервал для математического ожидания

В качестве еще одного примера рассмотрим задачу о доверительном интервале для математического ожидания. Пусть проведено n независимых опытов измерения случайной величины Х с неизвестным математическим ожиданием mx и дисперсией s2. На основании опытных данных Х1, Х2, ... , Хnпостроим выборочные оценки

Требуется построить (найти) доверительный интервал le, соответствующий доверительной вероятности b, для среднего генерального mx.

Так как среднее выборочное представляет сумму n независимых одинаково распределенных случайных величин то при достаточно большом объеме выборки согласно центральной предельной теоремы ее закон близок к нормальному. Существует эмпирическое правило, по которому при объеме выборки n³ 30 выборочное распределение можем считать нормальным.

Ранее было показано, что Найдем теперь такую величину e(b) > 0, для которой выполняется равенство

Считая случайную величину нормально распределенной, имеем

После замены имеем

По табличным значениям функции Лапласа Ф*(z) находим аргумент, при котором она равна b. Если этот аргумент обозначить Zb, то тогда

Среднее квадратичное значение приближенно можно заменить

где

Таким образом, доверительный интервал для среднего генерального равен:


le =

Если пользоваться табличными значениями интеграла вероятностей

то доверительный интервал принимает вид

le =

1.2 Распределение Стьюдента

При малом объеме выборки (n < 30) полученный доверительный интервал для среднего генерального, использующий нормальное распределение случайной величины , может быть очень грубым.

Для более точного получения доверительного интервала необходимо знать закон распределения случайной величины при малом объеме выборки. Для этого воспользуемся следующим результатом. Пусть Х1, Х2, ... , Хn – выборка нормально распределенной случайной величины Х, тогда, как доказано, случайная величина

подчиняется распределению Стьюдента cn – 1 степенью свободы, плотность распределения которого имеет вид

где - гамма функция. Эта плотность, как видно из формулы, зависит только от числа опытов n. Ниже представлены графики плотностей нормированной (mx = 0, s = 1) нормально распределенной и с распределением Стьюдента (n = 4) случайных величин.


нормальное распределение

f

распределение Стьдента
0,4

0,3

0,2

0,1

-4 -3 -2 -1 1 2 3 4 t

На основании найденных можно, пользуясь распределением Стьюдента, найти доверительный интервал для mx , соответствующий доверительной вероятности b. Действительно, так как то


Пользуясь таблицей значений интеграла

по значению b найдем величину а следовательно, и сам доверительный интервал le =

2. Проверка статистических гипотез

Принятие решения о параметрах генеральной совокупности играет исключительно важную роль на практике. Рассмотрим вопрос о принятии решения на примере. Пусть фирма, выпускающая конденсаторы, утверждает, что среднее пробивное напряжение конденсаторов равно или превышает 300 В. Испытав 100 конденсаторов, мы получили, что среднее выборочное пробивное напряжение равно 290 В, а несмещенное выборочное среднее квадратичное отклонение sn = 40 В. Можно ли с доверительной вероятностью 0,99 утверждать, что среднее пробивное напряжение превышает 300 В.

Здесь нас интересует односторонняя оценка – среднее пробивное напряжение должно превышать 300 В.

Выскажем статистическую гипотезу – генеральное среднее mx = 300 В, а затем проверим, соответствует ли она результатам наблюдения. Поскольку объем выборки больше 30, то выборочное среднее можно считать гауссовской случайной величиной с генеральной дисперсией s2»sn2. Введем центрированную и нормированную величину

Утверждение о том, что среднее выборочное напряжение эквивалентно утверждению, что случайная величина

Найдем вероятность того, что гауссовская случайная величина Z с mz = 0 и sz = 1 принимает значения больше zo:

Эта величина должна равняться доверительной вероятности 0,99. Тогда и по таблицам значений функции находим аргумент zo= -2,33. Вычислим теперь наблюдаемое значение случайной величины Z:

Мы видим, что наблюдаемое значение z = - 2,5 нe принадлежит интервалу [-2,33;¥), поэтому гипотезу нужно отвергнуть.

Приведем пример гипотезы с двухсторонней оценкой. Пусть фирма, выпускающая стабилитроны определенного типа, утверждает, что номинальное напряжение стабилизации стабилитронов равно 10 В. Естественно, что отклонение напряжения стабилизации в меньшую или большую стороны одинаково нежелательно. Выдвинем гипотезу, что генеральное среднее напряжение стабилизации равно 10 В, а затем проверим эту статистическую гипотезу по результатам наблюдения.

Пусть при испытании 100 стабилитронов среднее выборочное равно 10,3 В, а несмещенное выборочное среднее квадратичное отклонение равно 1,2 В. Можно ли с доверительной вероятностью 0,95 считать выдвинутую гипотезу справедливой? Так как объем выборки больше 30, то можно, как и в предыдущем примере, ввести гауссовскую случайную величину Z. Найдем

и приравняем правую часть полученного соотношения 0,95. Тогда и zo =1,96. Это значит, что наблюдаемое значение z должно принадлежать интервалу (-1,96; 1,96). Поскольку не попадает в указанный интервал, то гипотеза отвергается.

Если объем выборки n < 30, то случайная величина cчитается стьюденской случайной величиной T. Поэтому повторяя все указанные выше выкладки для проверки статистических гипотез, значения аргумента ищутся для распределения Стьюдента. При этом, так как "хвосты" стьюденского распределения по отношению к гауссовским удлиняются, доверительные интервалы расширяются, а возможности принятия гипотез улучшаются.


3. Функция риска

доверительный интервал вероятность статистическая гипотеза

Пусть имеются две противоположные гипотезы Но и Н1 и некоторая связанная с ними случайная величина Y. И пусть у - значение случайной величины Y, полученное в результате испытаний, которое принадлежит множеству D - множество всех значений случайной величины Y. Требуется провести проверку гипотезы Но относительно конкурирующей гипотезы Н1 на основании результатов испытания.

Разобьем множество D на две части - Dо и D1 с условием принятия гипотезы Но при попадании полученного значения у в Dо и гипотезы Н1 - при попадании у в D1. Выбор решающего правила, то есть разбиение множества Dна две части Dо и D1 в любой задаче проверки гипотез возможен больше, чем одним способом. Возникает вопрос, какое из этих разбиений в каждой конкретной задаче считать наилучшим? Чтобы решить поставленную задачу нужно обладать некоторой дополнительной информацией. Такая информация носит название априорной.

Будем считать известными два условных распределения вероятностей случайной величины Y:

- плотность распределения случайной величині Y при условии, что верна гипотеза Но;

- плотность распределения случайной величині Y при условии, что верна гипотеза Н1;

Кроме того нам потребуется априорная вероятность р того, что гипотеза Но имеет место.

Введем в рассмотрение события:

А – верна гипотеза Но, тогда р = р(А);

– верна конкурирующая гипотеза Н1, тогда р() = 1 - р;

В – в результате эксперимента значение у попало в интервал Dо;

– в результате эксперимента значение у попало в интервал D1.

Тогда по результатам эксперимента возможны только четыре события:

АВ – верна гипотеза Но и принято решение о ее истинности;

В – верна гипотеза Н1, а принято решение о истинности гипотезы Но;

А – верна гипотеза Но, а принято решение о истинности гипотезы Н1;

– верна гипотеза Н1 и принято решение о ее истинности.

Ясно, что события В и А определяют ошибочные решения. Событию В соответствует так называемая ошибка первого рода, а событию А - ошибка второго рода.

Для ответа на вопрос, какое из решающих правил следует считать лучшим, введем понятие функции потерь и функцию риска.

Функция потерь – дискретная случайная величина С, которая каждому из событий АВ, В, А, ставит в соответствие потери , выраженные в каких-то единицах. Правильному решению естественно положить нулевые потери, а ошибкам первого и второго ряда положить соответственно положительные потери (числа) С1 и С2, которые нужно задать.

Пусть ро = р(АВ или ), р1 = р(В), р2 = р(А). Определение значений этих вероятностей будет проведено ниже. Ряд распределения для случайной величины С имеет вид

С0с1с2
ррор1р2

Определение. Математическое ожидание М(С) случайной величины С называется функцией риска и обозначается буквой r.

Таким образом, r = М(С) = 0 ро + с1 р1 + с2 р2 = с1 р1 + с2 р2.

Введение функции риска приводит к естественному выбору решающего правила. Из двух правил лучшим считается то, которое приводит к меньшему риску. Для нахождения минимума функции риска найдем вероятности р1 и р2:

Тогда

Для того, чтобы интеграл был минимальным, а значит и минимальное значение принимала функция риска r, нужно в состав Dо включить только те у, в которых подыинтегральная функция

С1 (1-р) f1(y) – pC2fo(y) < 0,

а в состав D1- остальные значения у.

Последнее неравенство можно записать в виде

Функция f1(y)/fo(y) называется отношением правдоподобия.

Итак, оптимальное решающее правило заключается в следующем: полученное в результате эксперимента значение у подставляется в отношение правдоподобия f1(y)/fo(y) и сравнивается с числом

l =

если полученное в результате вычисления число f1(y)/fo(y) меньше l, принимается гипотеза Но; в противном случае – гипотеза Н1.

Величина l носит название порога, а оптимальное решающее правило носит название порогового критерия оптимальности.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно