Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Парная регрессия

Тип Реферат
Предмет Математика
Просмотров
1063
Размер файла
340 б
Поделиться

Ознакомительный фрагмент работы:

Парная регрессия

Смысл регрессионного анализа – построение функциональных зависимостей между двумя группами переменных величин Х1, Х2, … Хр и Y. При этом речь идет о влиянии переменных Х (это будут аргументы функций) на значения переменной Y (значение функции). Переменные Х мы будем называть факторами, а Y – откликом.

Наиболее простой случай – установление зависимости одного отклика y от одного фактора х. Такой случай называется парной (простой) регрессией.

Парная регрессия – уравнение связи двух переменных у иx:

,

где у – зависимая переменная (результативный признак);

х – независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.

Линейная регрессия:.

Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.

Регрессии, нелинейные по объясняющим переменным:

• полиномы разных степеней

•равносторонняя гипербола

Регрессии, нелинейные по оцениваемым параметрам:

• степенная ;

• показательная

• экспоненциальная

Построение уравнения регрессии сводится к оценке ее параметров. Для оценки параметров регрессий, линейных по параметрам, используют метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических минимальна, т.е.

Для линейных и нелинейных уравнений, приводимых к линейным, решается следующая система относительно а и b:

Можно воспользоваться готовыми формулами, которые вытекают из этой системы:

Тесноту связи изучаемых явлений оценивает линейный коэффициент парной корреляции для линейной регрессии

и индекс корреляции - для нелинейной регрессии ():


Оценку качества построенной модели даст коэффициент (индекс) детерминации, а также средняя ошибка аппроксимации.

Средняя ошибка аппроксимации – среднее отклонение расчетных значений от фактических:

Допустимый предел значений – не более 8 – 10%.

Средний коэффициент эластичности показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора xна 1% от своего среднего значения:

Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:

где – общая сумма квадратов отклонений;

– сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»);

–остаточная сумма квадратов отклонений.

Долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака у характеризует коэффициент (индекс) детерминации R2:

Коэффициент детерминации – квадрат коэффициента или индекса корреляции.

F-тест – оценивание качества уравнения регрессии – состоит в проверке гипотезы Ноо статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F-критерия Фишера. Fфактопределяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:

п – число единиц совокупности;

т – число параметров при переменных х.

Fтабл – это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости а. Уровень значимости а – вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно а принимается равной 0,05 или 0,01.

Если Fтабл < Fфакт, то H0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если Fтабл > Fфакт, то гипотеза Н0не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.

Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н0о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью f-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки:

Случайные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам:

Сравнивая фактическое и критическое (табличное) значения t-статистики – tтабл и tфакт– принимаем или отвергаем гипотезу Hо.

Связь между F-критерием Фишера и t-статистикой Стьюдента выражается равенством


Если tтабл < tфакт, то Hо отклоняется, т.е. а, bи не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора х. Если tтабл > tфакт, то гипотеза Ноне отклоняется и признается случайная природа формирования a, bили .

Для расчета доверительного интервала определяем предельную ошибку ∆ для каждого показателя:

Формулы для расчета доверительных интервалов имеют следующий вид:

Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, так как он не может одновременно принимать и положительное, и отрицательное значения.

Прогнозное значение определяется путем подстановки в уравнение регрессии соответствующего (прогнозного) значения . Вычисляется средняя стандартная ошибка прогноза :

где


и строится доверительный интервал прогноза:

где

Задача:

По 22 регионам страны изучается зависимость розничной продажи телевизоров, y от среднедушевых денежных доходов в месяц, x (табл. 1):

№ регионаXY
1,0002,80028,000
2,0002,40021,300
3,0002,10021,000
4,0002,60023,300
5,0001,70015,800
6,0002,50021,900
7,0002,40020,000
8,0002,60022,000
9,0002,80023,900
10,0002,60026,000
11,0002,60024,600
12,0002,50021,000
13,0002,90027,000
14,0002,60021,000
15,0002,20024,000
16,0002,60034,000
17,0003,30031,900
19,0003,90033,000
20,0004,60035,400
21,0003,70034,000
22,0003,40031,000

Задание

1. Постройте поле корреляции и сформулируйте гипотезу о форме связи.

2. Рассчитайте параметры уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессий.

3. Оцените тесноту связи с помощью показателей корреляции и детерминации.

4. С помощью среднего (общего) коэффициента эластичности дайте сравнительную оценку силы связи фактора с результатом.

5. Качество уравнений оцените с помощью средней ошибки аппроксимации.

6. С помощью F-критерия Фишера определите статистическую надежность результатов регрессионного моделирования. Выберите лучшее уравнение регрессии и дайте его обоснование.

7. Рассчитайте прогнозное значение результата по линейному уравнению регрессии, если прогнозное значение фактора увеличится на 7% от его среднего уровня. Определите доверительный интервал прогноза для уровня значимости α=0,05.

8. Оцените полученные результаты, выводы оформите в аналитической записке.

1.Поле корреляции для:

· Линейной регрессии y=a+b*x:

·


Гипотеза о форме связи:чем больше размер среднедушевого денежного дохода в месяц (факторный признак), тем больше при прочих равных условиях розничная продажа телевизоров (результативный признак). В данной модели параметр b называется коэффициентом регрессии и показывает, насколько в среднем отклоняется величина результативного признака у при отклонении величины факторного признаках на одну единицу.

· Степенной регрессии :

Гипотеза о форме связи: степенная функция имеет вид Y=axb.

Параметр b степенного уравнения называется показателем эластичности и указывает, на сколько процентов изменится у при возрастании х на 1%. При х = 1 a = Y.

· Экспоненциальная регрессия :


· Равносторонняя гипербола :

Гипотеза о форме связи: В ряде случаев обратная связь между факторным и результативным признаками может быть выражена уравнением гиперболы: Y=a+b/x.

· Обратная гипербола :


· Полулогарифмическая регрессия :

2. Рассчитайте параметры уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессий.

· Рассчитаем параметры уравнений линейной парной регрессии. Для расчета параметров a и b линейной регрессии y=a+b*x решаем систему нормальных уравнений относительно a и b:


По исходным данным рассчитываем ∑y, ∑x, ∑yx, ∑x2, ∑y2 (табл. 2):

№ регионаXYXYX^2Y^2Y^cpY-Y^cpAi
12,80028,00078,4007,840784,00025,7192,2810,081
22,40021,30051,1205,760453,69022,870-1,5700,074
32,10021,00044,1004,410441,00020,7340,2660,013
42,60023,30060,5806,760542,89024,295-0,9950,043
51,70015,80026,8602,890249,64017,885-2,0850,132
62,50021,90054,7506,250479,61023,582-1,6820,077
72,40020,00048,0005,760400,00022,870-2,8700,144
82,60022,00057,2006,760484,00024,295-2,2950,104
92,80023,90066,9207,840571,21025,719-1,8190,076
102,60026,00067,6006,760676,00024,2951,7050,066
112,60024,60063,9606,760605,16024,2950,3050,012
122,50021,00052,5006,250441,00023,582-2,5820,123
132,90027,00078,3008,410729,00026,4310,5690,021
142,60021,00054,6006,760441,00024,295-3,2950,157
152,20024,00052,8004,840576,00021,4462,5540,106
162,60034,00088,4006,7601156,00024,2959,7050,285
173,30031,900105,27010,8901017,61029,2802,6200,082
193,90033,000128,70015,2101089,00033,553-0,5530,017
204,60035,400162,84021,1601253,16038,539-3,1390,089
213,70034,000125,80013,6901156,00032,1291,8710,055
223,40031,000105,40011,560961,00029,9921,0080,033
Итого58,800540,1001574,100173,32014506,970540,1000,000
сред значение2,80025,71974,9578,253690,8080,085
станд. откл0,6435,417

Система нормальных уравнений составит:

Ур-ие регрессии: = 5,777+7,122∙x. Данное уравнение показывает, что с увеличением среднедушевого денежного дохода в месяц на 1 тыс. руб. доля розничных продаж телевизоров повышается в среднем на 7,12%.

· Рассчитаем параметры уравнений степенной парной регрессии. Построению степенной модели предшествует процедура линеаризации переменных. В примере линеаризация производится путем логарифмирования обеих частей уравнения:

где

Для расчетов используем данные табл. 3:

№ регXYXYX^2Y^2Yp^cpy^cp
11,0303,3323,4311,06011,1043,24525,67072
20,8753,0592,6780,7669,3563,11622,56102
30,7423,0452,2590,5509,2693,00420,17348
40,9563,1483,0080,9139,9133,18324,12559
50,5312,7601,4650,2827,6182,82716,90081
60,9163,0862,8280,8409,5263,15023,34585
70,8752,9962,6230,7668,9743,11622,56102
80,9563,0912,9540,9139,5553,18324,12559
91,0303,1743,2681,06010,0743,24525,67072
100,9563,2583,1130,91310,6153,18324,12559
110,9563,2033,0600,91310,2583,18324,12559
120,9163,0452,7900,8409,2693,15023,34585
131,0653,2963,5091,13410,8633,27526,4365
140,9563,0452,9090,9139,2693,18324,12559
150,7883,1782,5060,62210,1003,04320,97512
160,9563,5263,3690,91312,4353,18324,12559
171,1943,4634,1341,42511,9903,38329,4585
191,3613,4974,7591,85212,2263,52333,88317
201,5263,5675,4432,32912,7213,66138,90802
211,3083,5264,6141,71212,4353,47932,42145
221,2243,4344,2021,49811,7923,40830,20445
итого21,11567,72768,92122,214219,36167,727537,270
сред зн1,0053,2253,2821,05810,4463,225
стан откл0,2160,211

Рассчитаем С и b:

Получим линейное уравнение: . Выполнив его потенцирование, получим:

Подставляя в данное уравнение фактические значения х, получаем теоретические значения результата y.

· Рассчитаем параметры уравнений экспоненциальной парной регрессии. Построению экспоненциальной модели предшествует процедура линеаризации переменных. В примере линеаризация производится путем логарифмирования обеих частей уравнения:

где

Для расчетов используем данные табл. 4:


№ регионаXYXYX^2Y^2Ypy^cp
12,8003,3329,3307,84011,1043,22525,156
22,4003,0597,3415,7609,3563,11622,552
32,1003,0456,3934,4109,2693,03420,777
42,6003,1488,1866,7609,9133,17023,818
51,7002,7604,6922,8907,6182,92518,625
62,5003,0867,7166,2509,5263,14323,176
72,4002,9967,1905,7608,9743,11622,552
82,6003,0918,0376,7609,5553,17023,818
92,8003,1748,8877,84010,0743,22525,156
102,6003,2588,4716,76010,6153,17023,818
112,6003,2038,3276,76010,2583,17023,818
122,5003,0457,6116,2509,2693,14323,176
132,9003,2969,5588,41010,8633,25225,853
142,6003,0457,9166,7609,2693,17023,818
152,2003,1786,9924,84010,1003,06121,352
162,6003,5269,1696,76012,4353,17023,818
173,3003,46311,42710,89011,9903,36228,839
193,9003,49713,63615,21012,2263,52633,978
204,6003,56716,40721,16012,7213,71741,140
213,7003,52613,04813,69012,4353,47132,170
223,4003,43411,67611,56011,7923,38929,638
Итого58,80067,727192,008173,320219,36167,727537,053
сред зн2,8003,2259,1438,25310,446
стан откл0,6430,211

Рассчитаем С и b:

Получим линейное уравнение: . Выполнив его потенцирование, получим:

Для расчета теоретических значений y подставим в уравнение значения x.

· Рассчитаем параметры уравнений полулогарифмической парной регрессии. Построению полулогарифмической модели предшествует процедура линеаризации переменных. В примере линеаризация производится путем замены:

где

Для расчетов используем данные табл. 5:

№ регионаXYXYX^2Y^2y^cp
11,03028,00028,8291,060784,00026,238
20,87521,30018,6470,766453,69022,928
30,74221,00015,5810,550441,00020,062
40,95623,30022,2630,913542,89024,647
50,53115,8008,3840,282249,64015,525
60,91621,90020,0670,840479,61023,805
70,87520,00017,5090,766400,00022,928
80,95622,00021,0210,913484,00024,647
91,03023,90024,6081,060571,21026,238
100,95626,00024,8430,913676,00024,647
110,95624,60023,5060,913605,16024,647
120,91621,00019,2420,840441,00023,805
131,06527,00028,7471,134729,00026,991
140,95621,00020,0660,913441,00024,647
150,78824,00018,9230,622576,00021,060
160,95634,00032,4870,9131156,00024,647
171,19431,90038,0861,4251017,61029,765
191,36133,00044,9121,8521089,00033,351
201,52635,40054,0222,3291253,16036,895
211,30834,00044,4831,7121156,00032,221
221,22431,00037,9371,498961,00030,406
Итого21,115540,100564,16622,21414506,970540,100
сред зн1,00525,71926,8651,058690,808
стан откл0,2165,417

Рассчитаем a и b:

Получим линейное уравнение: .

· Рассчитаем параметры уравнений обратной парной регрессии. Для оценки параметров приведем обратную модель к линейному виду, заменив , тогда

Для расчетов используем данные табл. 6:

№ регионаXYXYX^2Y^2Y^cp
12,8000,0360,1007,8400,00124,605
22,4000,0470,1135,7600,00222,230
32,1000,0480,1004,4100,00220,729
42,6000,0430,1126,7600,00223,357
51,7000,0630,1082,8900,00419,017
62,5000,0460,1146,2500,00222,780
72,4000,0500,1205,7600,00322,230
82,6000,0450,1186,7600,00223,357
92,8000,0420,1177,8400,00224,605
102,6000,0380,1006,7600,00123,357
112,6000,0410,1066,7600,00223,357
122,5000,0480,1196,2500,00222,780
132,9000,0370,1078,4100,00125,280
142,6000,0480,1246,7600,00223,357
152,2000,0420,0924,8400,00221,206
162,6000,0290,0766,7600,00123,357
173,3000,0310,10310,8900,00128,398
193,9000,0300,11815,2100,00134,844
204,6000,0280,13021,1600,00147,393
213,7000,0290,10913,6900,00132,393
223,4000,0320,11011,5600,00129,301
Итого58,8000,8532,296173,3200,036537,933
сред знач2,8000,0410,1098,2530,002
стан отклон0,6430,009

Рассчитаем a и b:

Получим линейное уравнение: . Выполнив его потенцирование, получим:

Для расчета теоретических значений y подставим в уравнение значения x.

· Рассчитаем параметры уравнений равносторонней гиперболы парной регрессии. Для оценки параметров приведем модель равносторонней гиперболы к линейному виду, заменив , тогда

Для расчетов используем данные табл. 7:

№ регионаX=1/zYXYX^2Y^2Y^cp
10,35728,00010,0000,128784,00026,715
20,41721,3008,8750,174453,69023,259
30,47621,00010,0000,227441,00019,804
40,38523,3008,9620,148542,89025,120
50,58815,8009,2940,346249,64013,298
60,40021,9008,7600,160479,61024,227
70,41720,0008,3330,174400,00023,259
80,38522,0008,4620,148484,00025,120
90,35723,9008,5360,128571,21026,715
100,38526,00010,0000,148676,00025,120
110,38524,6009,4620,148605,16025,120
120,40021,0008,4000,160441,00024,227
130,34527,0009,3100,119729,00027,430
140,38521,0008,0770,148441,00025,120
150,45524,00010,9090,207576,00021,060
160,38534,00013,0770,1481156,00025,120
170,30331,9009,6670,0921017,61029,857
190,25633,0008,4620,0661089,00032,564
200,21735,4007,6960,0471253,16034,829
210,27034,0009,1890,0731156,00031,759
220,29431,0009,1180,087961,00030,374
Итого7,860540,100194,5873,07314506,970540,100
сред знач0,37425,7199,2660,1461318,815
стан отклон0,07925,639

Рассчитаем a и b:

Получим линейное уравнение: . Получим уравнение регрессии: .

3. Оценка тесноты связи с помощью показателей корреляции и детерминации:

· Линейная модель. Тесноту линейной связи оценит коэффициент корреляции. Был получен следующий коэффициент корреляции rxy=b=7,122*, что говорит о прямой сильной связи фактора и результата. Коэффициент детерминации r²xy=(0,845)²=0,715. Это означает, что 71,5% вариации результативного признака (розничнаяпродажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Степенная модель. Тесноту нелинейной связи оценит индекс корреляции. Был получен следующий индекс корреляции =, что говорит о очень сильной тесной связи, но немного больше чем в линейной модели. Коэффициент детерминации r²xy=0,7175. Это означает, что 71,75% вариации результативного признака (розничнаяпродажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Экспоненциальная модель. Был получен следующий индекс корреляции ρxy=0,8124, что говорит о том, что связь прямая и очень сильная, но немного слабее, чем в линейной и степенной моделях. Коэффициент детерминации r²xy=0,66. Это означает, что 66% вариации результативного признака (розничнаяпродажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Полулогарифмическая модель. Был получен следующий индекс корреляции ρxy=0,8578, что говорит о том, что связь прямая и очень сильная, но немного больше чем в предыдущих моделях. Коэффициент детерминации r²xy=0,7358. Это означает, что 73,58% вариации результативного признака (розничнаяпродажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Гиперболическая модель. Был получен следующий индекс корреляции ρxy=0,8448 и коэффициент корреляции rxy=-0,1784 что говорит о том, что связь обратная очень сильная. Коэффициент детерминации r²xy=0,7358. Это означает, что 73,5% вариации результативного признака (розничнаяпродажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Обратная модель. Был получен следующий индекс корреляции ρxy=0,8114 и коэффициент корреляции rxy=-0,8120, что говорит о том, что связь обратная очень сильная. Коэффициент детерминации r²xy=0,6584. Это означает, что 65,84% вариации результативного признака (розничнаяпродажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

Вывод: по полулогарифмическому уравнению получена наибольшая оценка тесноты связи: ρxy=0,8578 (по сравнению с линейной, степенной, экспоненциальной, гиперболической, обратной регрессиями).

4. С помощью среднего (общего) коэффициента эластичности дайте сравнительную оценку силы связи фактора с результатом.

Рассчитаем коэффициент эластичности для линейной модели:

· Для уравнения прямой:y = 5,777+7,122∙x

· Для уравнениястепенноймодели :

· Для уравненияэкспоненциальноймодели:


Для уравненияполулогарифмическоймодели :

· Для уравнения обратной гиперболической модели :

· Для уравнения равносторонней гиперболической модели :

Сравнивая значения , характеризуем оценку силы связи фактора с результатом:

·

·

·

·

·

·

Известно, что коэффициент эластичности показывает связь между фактором и результатом, т.е. на сколько% изменится результат y от своей средней величины при изменении фактора х на 1% от своего среднего значения. В данном примере получилось, что самая большая сила связи между фактором и результатом в полулогарифмической модели, слабая сила связи в обратной гиперболической модели.

5. Оценка качества уравнений с помощью средней ошибки аппроксимации.

Подставляя в уравнение регрессии фактические значения х, определим теоретические (расчетные) значения . Найдем величину средней ошибки аппроксимации :

В среднем расчетные значения отклоняются от фактических на:

· Линейная регрессия. =*100%= 8,5%, что говорит о повышенной ошибке аппроксимации, но в допустимых пределах.

Качество построенной модели оценивается как хорошее, так как не превышает 8 -10%.

· Степенная регрессия. =*100%= 8,2%, что говорит о повышенной ошибке аппроксимации, но в допустимых пределах.

Качество построенной модели оценивается как хорошее, так как не превышает 8 -10%.

· Экспоненциальная регрессия. =*100%= 9%, что говорит о повышенной ошибке аппроксимации, но в допустимых пределах.

Качество построенной модели оценивается как хорошее, так как не превышает 8 -10%.

· Полулогарифмическая регрессия. =*100%= 7,9 что говорит о повышенной ошибке аппроксимации, но в допустимых пределах.

Качество построенной модели оценивается как хорошее, так как не превышает 8 -10%.

· Гиперболическая регрессия. =*100%= 9,3 что говорит о повышенной ошибке аппроксимации, но в допустимых пределах.

Качество построенной модели оценивается как хорошее, так как не превышает 8 -10%.

· Обратная регрессия. =*100%= 9,9 3 что говорит о повышенной ошибке аппроксимации, но в допустимых пределах.

Качество построенной модели оценивается как хорошее, так как не превышает 8 -10%.

6. Рассчитаем F-критерий:

· Линейная регрессия. = *19= 47,579

где =4,38<

· Степенная регрессия. =*19= 48,257


где =4,38<

· Экспоненциальная регрессия. =*19= 36,878

где =4,38<

· Полулогарифмическая регрессия. =*19= 52,9232

где =4,38<

· Гиперболическая регрессия. =*19= 47,357

где =4,38<

· Обратная регрессия. =*19= 36,627

где =4,38<

Для всех регрессий=4,38< , из чего следует, что уравнения регрессии статистически значимы.

Вывод: остается на допустимом уровне для всех уравнений регрессий.


АR^2Fфакт
Линейная модель8,50,71447,500
Степенная модель8,20,71848,250
Полулогарифмическая модель7,90,73652,920
Экспоненциальная модель9,00,66036,870
Равносторонняя гипербола9,30,71447,350
Обратная гипербола9,90,45315,700

Все уравнения регрессии достаточно хорошо описывают исходные данные. Некоторое предпочтение можно отдать полулогарифмической функции, для которой значение R^2 наибольшее, а ошибка аппроксимации – наименьшая

7. Рассчитаем прогнозное значение результата по линейному уравнению регрессии, если прогнозное значение фактора увеличится на 7% от его среднего уровня. Определим доверительный интервал прогноза для уровня значимости α=0,05:

Прогнозное значение определяется путем подстановки в уравнение регрессии соответствующего (прогнозного) значения .
5,777+7,122*2,996=27,114

где = =2,8*1,07=2,996

Средняя стандартная ошибка прогноза :

==3,12

где = =0,697886


Предельная ошибка прогноза:

Доверительный интервал прогноза

где

=27,116,53;

27,11–6,53 = 20,58

27,11+6,53 = 33,64

Выполненный прогноз среднедушевых денежных доходов в месяц, xоказался надежным (р = 1 – α = 1 – 0,05 = 0,95), но неточным, так как диапазон верхней и нижней границ доверительного интервала составляет 2,09 раза:

= = =1,63


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно