Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Статика корабля

Тип Реферат
Предмет Промышленность и производство
Просмотров
1582
Размер файла
498 б
Поделиться

Ознакомительный фрагмент работы:

Статика корабля

ТЕМА: РАСЧЕТЫ ПО СТАТИКЕ КОРАБЛЯ

ОГЛАВЛЕНИЕ

Введение

1. Исходные данные

2. Кривые элементов теоретического чертежа

3. Масштаб Бонжана

4. Расчет посадки и остойчивости судна

5. Расчет посадки и остойчивости поврежденного судна

6. Сводные данные

7. Проверка по критерию погоды и ускорения

Заключение.

Приложение 1. Масштаб Бонжана

Приложение 2.Строеввя по шпангоутам

Приложение 3. Диаграмма статической и динамической остойчивости

Список литературы


ВВЕДЕНИЕ

Задача судостроительных наук — изучение отдельных эксплуатационных и мореходных качеств судна, а также техники, обеспечивающей эти качества. Одной из наиболее важных судостроительных наук является теория корабля (или теория судна).

Теорией корабля называется наука о равновесии и движении судна. Она состоит из двух частей — статики судна и динамики судна.

Под статикой корабля обычно подразумевают раздел теории корабля, посвященный изучению основных мореходных качеств — плавучести и остойчивости целого и поврежденного корабля.

Задача статики состоит:

1) в установлении характеристик, при помощи которых можно оценить качественно и количественно плавучесть и остойчивость целого и поврежденного корабля;

2) в установлении математической связи между размерами и формой корабля и характеристиками плавучести и остойчивости;

3) в разработке практических методов расчета, позволяющих вычислить характеристики плавучести и остойчивости исходя из размеров и формы обводов корабля.

Размеры и форма обводов корабля фиксируются на теоретическом чертеже, который является основным чертежом всякого судна. Так как обводы корабля задаются только теоретическим чертежом и не выражаются аналитическими зависимостями, необходимые для определения характеристик плавучести и остойчивости расчеты выполняют исходя из размеров, снятых с теоретического чертежа, и применяя известные в математике методы приближенного вычисления определенных интегралов.

Исходя из вышесказанного можно сформулировать цель данной работы:

- Создание плазовой таблицы судна путем ее пересчета с плазовой таблицы судна-прототипа.

- Создание теоретического чертежа.

- Расчеты кривых элементов теоретического чертежа, масштаба Бонжана, посадки и остойчивости для судна в полном грузу.

- Создание повреждения судна и расчет элементов поврежденного судна.

Расчеты в данной работе выполнены с помощью программы S1, созданной в С-Пб. ГМТУ.

Программа S1 предназначена для проведения ряда гидростатических расчетов морских транспортных судов в рамках курсовых и дипломных проектов.

Программа S1 позволяет выполнять:

- ввод теоретического чертежа (по шпангоутам и фор-/ахтерштевня) в графическом редакторе;

- проверку строевой по шпангоутам, ватерлинии и основных элементов судна-проекта;

- линейное (афинноe) перестроение теоретического чертежа при изменении длины, ширины, и/или осадки или увеличение цилиндрической вставки;

- ввод 5-ти вариантов нагрузки судна;

- расчет кривых элементов теоретического чертежа;

- расчет Масштаба Бонжана и Кривых Власова;

- удифферентовка (расчет посадки) судна;

- расчет остойчивости судна на больших углах крена (диаграмма остойчивости);

- расчет изгибающих моментов и перерезывающих сил на тихой воде;

- вывод результатов в виде отчетных таблиц и графиков на экране и в файл формата DXF;

- вывод теоретического чертежа в текстовый файл;

- вывод теоретического чертежа в файл типа DXF для использования в чертежных программах, таких как AutoCAD (как в двухмерном, так и в трехмерном описании);

- расчет непотопляемости судна по специальной методике.

Рисунок 1. Пример DXF файла, созданного программой S1

В ходе выполнения данной работы необходимо построить теоретический чертеж корпуса судна. Для построения корпуса и контуров штевней составляем таблицу основных абсцисс, ординат и аппликат. В исходной таблице даны значения безразмерных абсцисс, ординат и аппликат корпуса судна.

При составлении таблиц использованы следующие обозначения:

ВП - ординаты линии борта главной палубы;

Zвп - аппликаты линии борта главной палубы;

Z1 - аппликаты контуров» шпангоутов на первом батоксе;

Z2 - аппликаты контуров шпангоутов на втором батоксе;

Zф - аппликата точки пересечения контура форштевня с верхней палубой;

Zа - аппликата точки пересечения контура ахтервтевня с верхней палубой;

Xф - абсциссы контура форштевня, отсчитываемые от нулевого шпангоута: положительные в нос, отрицательные в корму;

Xа - абсциссы контура ахтерштевня, отсчитываемые от десятого шпангоута: положительные в нос, отрицательные в корму.

Затем составляем таблицу, аналогичную приведенной в задании, но содержащую размерные величины абсцисс, ординат и аппликат. По данным заполненной таблицы строим теоретический чертеж корпуса судна.

1. ИСХОДНЫЕ ДАННЫЕ

Длина между перпендикулярами:Lpp=100м
Отношение длины к ширине:L/B=6.5
Отношение ширины к осадке:B/T=2.5

Исходная безразмерная таблица плазовых ординат. Таблица 1.1

№ ВЛОрдинаты
Номера теоретических шпангоутов
012345678910
0-0.0000.0960.3580.5850.6990.5130.3480.1650.009--0.1900.893
1-0.1730.4140.7070.9120.9680.8680.6510.3790.183--0.0890.417
2-0.2040.4980.8000.9691.0000.9580.7830.4500.226--0.0650.083
3-0.2150.5400.8370.9781.0000.9950.8630.5360.222--0.0520.208
4-0.2200.5590.8490.9851.0001.0000.9150.6500.240--0.0380.346
5-0.2310.5780.8590.9861.0001.0000.9520.7890.433--0.0240.226
6ГВЛ0.0000.2520.6040.8700.9871.0001.0000.9750.8850.6100.2250.000-0.426
70.0160.2930.6450.8860.9871.0001.0000.9910.9450.7370.3690.031-0.548
80.0410.3630.6970.9030.9871.0001.0001.0000.9710.8190.4630.083-0.558
ВП0.1490.5440.7970.9300.9871.0001.0001.0000.9860.8730.5480.247-0.536
Zвп1.6771.6331.5831.5331.5101.4901.4791.4791.4811.5101.563
Z1-1.2750.0900.0000.0000.0000.0000.0000.1060.7601.123
Z2--1.2500.1380.0130.0000.0300.1850.6851.073-1.6881.594
Главные размерения судна:
Длина наибольшая:Lmax=107.83м
Длина между перпендикулярами:Lpp=100.00м
Ширина:B=15.38м
Высота борта на миделе:H=9.17м
Осадка судна:T=7.69м
Теоретическая шпация:dL=10м
Таблица плазовых ординат судна. Таблица 2
№ ВЛОрдинаты, мXф от миделя, мXа от миделя, м
Номера теоретических шпангоутов
012345678910
0-0.000.742.754.505.383.942.681.270.07-48.10-41.07
1-1.333.185.447.017.446.675.012.911.41-49.11-45.83
2-1.573.836.157.457.697.376.023.461.74-49.35-49.17
3-1.654.156.447.527.697.656.644.121.71-49.48-47.92
4-1.694.306.537.577.697.697.045.001.85-49.62-46.54
5-1.784.446.617.587.697.697.326.073.33-49.76-47.74
6ГВЛ0.001.944.646.697.597.697.697.506.814.691.7350.00-54.26
70.122.264.966.817.597.697.697.627.275.672.8450.31-55.48
80.322.795.366.947.597.697.697.697.476.303.5650.83-55.58
ВП1.154.186.137.157.597.697.697.697.586.714.2152.47-55.36
Zвп, м10.3110.059.749.439.299.169.109.109.119.299.61Zф от ОП, мZа, от ОП, м
Z1, м-7.850.550.000.000.000.000.000.654.676.91
Z2, м--7.690.850.080.000.181.144.216.60-10.389.80

По данным приведенной выше пересчитанной плазовой таблицы в программе “S1” создана математическая модель корпуса судна.

Рис. 1.2 Проекция корпус теоретического чертежа корпуса судна

Рис. 1.3 Трехмерная математическая модель корпуса судна


Далее приведены результаты расчетов в табличной форме, выполненные с помощью программы “S1”.

2. КРИВЫЕ ЭЛЕМЕНТОВ ТЕОРЕТИЧЕСКОГО ЧЕРТЕЖА

Кривые элементов теоретического чертежа – это группа величин, вычисляемых с использованием геометрической модели судна.

К кривым элементов теоретического чертежа относят:

- Объемное водоизмещение V:

где w(х) – площадь погруженной части теоретического шпангоута с абсциссой х;

у(x,z) – ордината точки на теоретической поверхности корпуса, симметричного относительно ДП;

S(z) – площадь теоретической ватерлинии, параллельно ОП.

- Координаты центра величины xc и zcс=0 в силу симметрии корпуса судна относительно ДП):

где Му – статический момент площади ватерлинии относительно оси OY;

Xf – абсцисса центра тяжести площади действующей ватерлинии;

Mxy, Myz, Mzx – статические моменты водоизмещения относительно осей OZ, OX, OY соответственно.

- Площадь ватерлинии S:

- Абсцисса центра тяжести площади ватерлинии xf:

- Центральные моменты инерции площади ватерлинии Ix и Iyf;

- Продольный (R) и поперечный (r) метацентрические радиусы:

- Аппликата поперечного метацентра:

- Коэффициенты полноты.

В данном разделе приведены результаты расчетов кривых элементов теоретического чертежа судна.

программа S1 - DERGUNOV.KET Таблица 2.1

╔════════════════════════════════════════════════════════════╗

║ расчет кривой элементов теоретического чертежа ║

╠════════════════════════════════════════════════════════════╣

║ T - осадка, м ║

║ V - обьёмное водоизмещение, м**3 ║

║ Xc - координаты центра величины, м ║

║ Zc - координаты центра величины, м ║

║ r - поперечный метацентрический радиус, м ║

║ R - продольный метацентрический радиус, м ║

║ Zm - параметр Zm=(4)+(5),м ║

╠═══════╤══════════╤════════╤═══════╤═══════╤═══════╤════════╣

║ T │ V │ Xc │ Zc │ r │ R │ Zm ║

╟───────┼──────────┼────────┼───────┼───────┼───────┼────────╢

║ .10 │ 33.8 │ 5.00 │ .05 │ 112.7 │ 4793. │ 112.73 ║

║ .56 │ 318.1 │ .33 │ .30 │ 22.3 │ 869. │ 22.56 ║

║ 1.02 │ 660.4 │ .74 │ .55 │ 14.1 │ 505. │ 14.63 ║

║ 1.48 │ 1043.9 │ .51 │ .80 │ 10.4 │ 354. │ 11.18 ║

║ 1.93 │ 1445.3 │ .52 │ 1.05 │ 8.2 │ 273. │ 9.27 ║

║ 2.39 │ 1862.2 │ .19 │ 1.30 │ 6.8 │ 220. │ 8.11 ║

║ 2.85 │ 2295.6 │ .25 │ 1.54 │ 5.8 │ 183. │ 7.33 ║

║ 3.31 │ 2726.8 │ .18 │ 1.78 │ 5.0 │ 156. │ 6.83 ║

║ 3.77 │ 3175.9 │ .10 │ 2.03 │ 4.5 │ 137. │ 6.51 ║

║ 4.23 │ 3614.6 │ .09 │ 2.27 │ 4.1 │ 124. │ 6.33 ║

║ 4.68 │ 4076.9 │ -.03 │ 2.52 │ 3.7 │ 115. │ 6.25 ║

║ 5.14 │ 4551.8 │ -.23 │ 2.76 │ 3.5 │ 111. │ 6.25 ║

║ 5.60 │ 5035.1 │ -.53 │ 3.02 │ 3.3 │ 111. │ 6.30 ║

║ 6.06 │ 5540.1 │ -.82 │ 3.27 │ 3.1 │ 110. │ 6.38 ║

║ 6.52 │ 6064.8 │ -1.19 │ 3.54 │ 2.9 │ 108. │ 6.48 ║

║ 6.98 │ 6604.5 │ -1.52 │ 3.80 │ 2.8 │ 105. │ 6.60 ║

║ 7.44 │ 7145.8 │ -1.84 │ 4.06 │ 2.7 │ 103. │ 6.73 ║

║ 7.89 │ 7706.8 │ -2.09 │ 4.32 │ 2.6 │ 100. │ 6.88 ║

║ 8.35 │ 8272.6 │ -2.29 │ 4.59 │ 2.4 │ 97. │ 7.03 ║

║ 8.81 │ 8856.6 │ -2.50 │ 4.85 │ 2.3 │ 95. │ 7.19 ║

╚═══════╧══════════╧════════╧═══════╧═══════╧═══════╧════════╝

Таблица 2.2

╔════════════════════════════════════════════════════════════╗

║ расчет кривой элементов теоретического чертежа ║

╠════════════════════════════════════════════════════════════╣

║ T - осадка, м ║

║ S - площадь ватерлинии, м**2 ║

║ Xf - координаты ЦТ площади ватерлинии, м ║

║ моменты инерции площади ватерлинии : ║

║ Ix - относительно центральной продольной оси, м**4 ║

║ Iy - относительно оси Y через мидель, м**4 ║

║ If - относительно центральнoй поперечной оси, м**4 ║

╠═══════╤══════════╤════════╤══════════╤══════════╤══════════╣

║ T │ S │ Xf │ Ix │ Iy │ If ║

╟───────┼──────────┼────────┼──────────┼──────────┼──────────╢

║ .10 │ 521.5 │ .11 │ .381E+04 │ .162E+06 │ .162E+06 ║

║ .56 │ 707.2 │ .81 │ .708E+04 │ .277E+06 │ .276E+06 ║

║ 1.02 │ 799.3 │ .70 │ .930E+04 │ .334E+06 │ .333E+06 ║

║ 1.48 │ 855.8 │ .49 │ .108E+05 │ .369E+06 │ .369E+06 ║

║ 1.93 │ 893.3 │ .25 │ .119E+05 │ .394E+06 │ .394E+06 ║

║ 2.39 │ 920.0 │ .07 │ .127E+05 │ .410E+06 │ .410E+06 ║

║ 2.85 │ 939.3 │ -.04 │ .133E+05 │ .421E+06 │ .421E+06 ║

║ 3.31 │ 952.7 │ -.09 │ .138E+05 │ .427E+06 │ .427E+06 ║

║ 3.77 │ 967.5 │ -.30 │ .142E+05 │ .435E+06 │ .435E+06 ║

║ 4.23 │ 985.1 │ -.64 │ .147E+05 │ .448E+06 │ .447E+06 ║

║ 4.68 │ 1008.8 │ -1.20 │ .152E+05 │ .469E+06 │ .467E+06 ║

║ 5.14 │ 1043.7 │ -2.14 │ .159E+05 │ .505E+06 │ .500E+06 ║

║ 5.60 │ 1086.0 │ -3.36 │ .165E+05 │ .559E+06 │ .547E+06 ║

║ 6.06 │ 1122.5 │ -4.29 │ .172E+05 │ .610E+06 │ .589E+06 ║

║ 6.52 │ 1154.8 │ -4.91 │ .178E+05 │ .655E+06 │ .627E+06 ║

║ 6.98 │ 1184.1 │ -5.31 │ .185E+05 │ .697E+06 │ .663E+06 ║

║ 7.44 │ 1209.6 │ -5.50 │ .191E+05 │ .734E+06 │ .697E+06 ║

║ 7.89 │ 1233.2 │ -5.55 │ .197E+05 │ .769E+06 │ .731E+06 ║

║ 8.35 │ 1256.0 │ -5.48 │ .202E+05 │ .805E+06 │ .767E+06 ║

║ 8.81 │ 1278.0 │ -5.30 │ .208E+05 │ .840E+06 │ .804E+06 ║

╚═══════╧══════════╧════════╧══════════╧══════════╧══════════╝

Таблица 2.3

╔════════════════════════════════════════════════════════════╗

║ расчет кривой элементов теоретического чертежа ║

╠════════════════════════════════════════════════════════════╣

║ T - осадка, м ║

║ V - обьёмное водоизмещение, м**3 ║

║ Lwl - длина ватерлинии, м ║

║ Для расчета управляемости судна: ║

║ Sн - площадь носового подреза отн. Lwl, м**2 ║

║ Sк - площадь кормового подреза отн. Lwl, м**2 ║

║ Для расчета сопротивления воды движения судна: ║

║ SF - плошадь смоченной поверхности, м**2 ║

╠═══════╤══════════╤════════╤══════════╤══════════╤══════════╣

║ T │ V │ Lwl │ Sн │ Sк │ SF ║

╟───────┼──────────┼────────┼──────────┼──────────┼──────────╢

║ .10 │ 33.8 │ 89.92 │ .01 │ .02 │ 523.5 ║

║ .56 │ 318.1 │ 92.53 │ .15 │ .15 │ 728.3 ║

║ 1.02 │ 660.4 │ 94.88 │ .33 │ 1.10 │ 853.5 ║

║ 1.48 │ 1043.9 │ 96.57 │ .49 │ .94 │ 956.3 ║

║ 1.93 │ 1445.3 │ 98.13 │ .64 │ 1.89 │ 1050.4 ║

║ 2.39 │ 1862.2 │ 98.56 │ .79 │ 2.24 │ 1139.5 ║

║ 2.85 │ 2295.6 │ 98.39 │ .94 │ 1.76 │ 1226.0 ║

║ 3.31 │ 2726.8 │ 96.89 │ 1.13 │ -2.12 │ 1311.8 ║

║ 3.77 │ 3175.9 │ 96.25 │ 1.34 │ -4.21 │ 1397.9 ║

║ 4.23 │ 3614.6 │ 96.22 │ 1.58 │ -4.54 │ 1484.8 ║

║ 4.68 │ 4076.9 │ 96.54 │ 1.93 │ -3.38 │ 1576.0 ║

║ 5.14 │ 4551.8 │ 97.65 │ 2.27 │ 2.58 │ 1675.0 ║

║ 5.60 │ 5035.1 │ 101.05 │ 2.81 │ 24.13 │ 1843.7 ║

║ 6.06 │ 5540.1 │ 103.83 │ 3.39 │ 43.37 │ 1964.0 ║

║ 6.52 │ 6064.8 │ 105.00 │ 4.08 │ 51.73 │ 2137.3 ║

║ 6.98 │ 6604.5 │ 105.54 │ 5.09 │ 55.03 │ 2244.0 ║

║ 7.44 │ 7145.8 │ 105.92 │ 6.39 │ 56.80 │ 2347.5 ║

║ 7.89 │ 7706.8 │ 106.19 │ 8.15 │ 57.17 │ 2449.7 ║

║ 8.35 │ 8272.6 │ 106.47 │ 10.34 │ 57.25 │ 2551.9 ║

║ 8.81 │ 8856.6 │ 106.71 │ 12.91 │ 56.65 │ 2654.2 ║

╚═══════╧══════════╧════════╧══════════╧══════════╧══════════╝

Рис. 2.1 Кривые элементов теоретического чертежа

3. МАСШТАБ БОНЖАНА

Масштаб Бонжана представляет собой совокупность кривых, каждая из которых определяет погруженную площадь шпангоута в зависимости от его углубления и строится от следа соответствующего шпангоута на диаметральной плоскости судна. Чтобы использовать масштаб Бонжана, прежде всего, наносим на него ватерлинию судна. После нанесения ватерлинии в точках ее пересечения со следами шпангоутов снимаем с кривых значения погруженных площадей шпангоутов и вычисляем водоизмещение и абсциссу центра величины.

Рис. 3.1 Пример построения масштаба Бонжана

С помощью масштаба Бонжана строим строевую по шпангоутам, которая используется в расчетах общей продольной прочности судна, также при разработке теоретического чертежа. Строевая по шпангоутам представляет собой кривую, ординаты которой в некотором выбранном масштабе равны погруженным по заданную ватерлинию WLплощадям шпангоутов, отложенным вдоль следов шпангоутов на диаметральной плоскости судна. Таким образом, эта кривая характеризует закон распределения погруженных площадей шпангоутов по длине судна.

Кривыми Власова называют кривые статических моментов половины площади шпангоута относительно осей OZ и OY.

Площадь шпангоута:

Половина площади шпангоута:

Статические моменты половины площади шпангоута относительно осей OZ и OY соответственно:

В данном разделе приведены результаты расчетов масштаба Бонжана математической модели корпуса судна.

программа S1 - DERGUNOV.KWT Таблица 3.1

╔════════════════════════════════════════════════════════════╗

║ расчет масштаба Бонжана и кривых В.Г. Власова ║

╠════════════════════════════════════════════════════════════╣

║ шпангоут номер : 1 X = 50.00 м ║

╠════════════════════════════════════════════════════════════╣

║ (T) - осадка, м ║

║ (O) - площадь шпангоута, м**2 ║

║ (B) - статический момент относительно ОY, м**3 ║

║ (C) - статический момент относительно ОZ, м**3 ║

║ (Z) - аппликата центра площади шпангоута, м ║

╠════════╤═══════════╤══════════════╤═════════════╤══════════╣

║ (T) │ (O) │ (B) │ (C) │ (Z) ║

╟────────┼───────────┼──────────────┼─────────────┼──────────╢

║ 11.00 │ 3.4 │ .6 │ 15.4 │ 9.16 ║

║ 10.45 │ 3.4 │ .6 │ 15.4 │ 9.16 ║

║ 9.90 │ 2.5 │ .3 │ 11.1 │ 8.85 ║

║ 9.35 │ 1.6 │ .2 │ 6.9 │ 8.43 ║

║ 8.80 │ 1.0 │ .1 │ 4.1 │ 8.03 ║

║ 8.25 │ .6 │ .0 │ 2.2 │ 7.63 ║

║ 7.70 │ .3 │ .0 │ 1.0 │ 7.23 ║

║ 7.15 │ .1 │ .0 │ .3 │ 6.84 ║

║ 6.60 │ .0 │ .0 │ .0 │ 6.45 ║

║ 6.05 │ -- │ -- │ -- │ -- ║

║ 5.50 │ -- │ -- │ -- │ -- ║

║ 4.95 │ -- │ -- │ -- │ -- ║

║ 4.40 │ -- │ -- │ -- │ -- ║

║ 3.85 │ -- │ -- │ -- │ -- ║

║ 3.30 │ -- │ -- │ -- │ -- ║

║ 2.75 │ -- │ -- │ -- │ -- ║

║ 2.20 │ -- │ -- │ -- │ -- ║

║ 1.65 │ -- │ -- │ -- │ -- ║

║ 1.10 │ -- │ -- │ -- │ -- ║

║ .55 │ -- │ -- │ -- │ -- ║

╚════════╧═══════════╧══════════════╧═════════════╧══════════╝

Таблица 3.1 (продолжение)

╔════════════════════════════════════════════════════════════╗

║ расчет масштаба Бонжана и кривых В.Г. Власова ║

╠════════════════════════════════════════════════════════════╣

║ шпангоут номер : 2 X = 40.00 м ║

╠════════════════════════════════════════════════════════════╣

║ (T) - осадка, м ║

║ (O) - площадь шпангоута, м**2 ║

║ (B) - статический момент относительно ОY, м**3 ║

║ (C) - статический момент относительно ОZ, м**3 ║

║ (Z) - аппликата центра площади шпангоута, м ║

╠════════╤═══════════╤══════════════╤═════════════╤══════════╣

║ (T) │ (O) │ (B) │ (C) │ (Z) ║

╟────────┼───────────┼──────────────┼─────────────┼──────────╢

║ 11.00 │ 41.1 │ 24.3 │ 125.2 │ 6.09 ║

║ 10.45 │ 41.1 │ 24.3 │ 125.2 │ 6.09 ║

║ 9.90 │ 39.7 │ 22.7 │ 118.0 │ 5.95 ║

║ 9.35 │ 35.5 │ 18.7 │ 97.7 │ 5.51 ║

║ 8.80 │ 32.0 │ 15.9 │ 81.8 │ 5.12 ║

║ 8.25 │ 28.6 │ 13.4 │ 67.7 │ 4.73 ║

║ 7.70 │ 25.7 │ 11.4 │ 55.9 │ 4.35 ║

║ 7.15 │ 23.1 │ 9.8 │ 46.1 │ 4.00 ║

║ 6.60 │ 20.6 │ 8.5 │ 37.8 │ 3.66 ║

║ 6.05 │ 18.5 │ 7.5 │ 31.0 │ 3.36 ║

║ 5.50 │ 16.4 │ 6.5 │ 25.1 │ 3.05 ║

║ 4.95 │ 14.5 │ 5.6 │ 19.9 │ 2.76 ║

║ 4.40 │ 12.5 │ 4.8 │ 15.5 │ 2.46 ║

║ 3.85 │ 10.7 │ 4.0 │ 11.6 │ 2.17 ║

║ 3.30 │ 8.9 │ 3.2 │ 8.4 │ 1.89 ║

║ 2.75 │ 7.0 │ 2.5 │ 5.6 │ 1.59 ║

║ 2.20 │ 5.3 │ 1.8 │ 3.4 │ 1.30 ║

║ 1.65 │ 3.6 │ 1.1 │ 1.8 │ 1.00 ║

║ 1.10 │ 2.0 │ .5 │ .7 │ .68 ║

║ .55 │ .6 │ .1 │ .1 │ .35 ║

╚════════╧═══════════╧══════════════╧═════════════╧══════════╝

Таблица 3.1 (продолжение)

╔════════════════════════════════════════════════════════════╗

║ расчет масштаба Бонжана и кривых В.Г. Власова ║

╠════════════════════════════════════════════════════════════╣

║ шпангоут номер : 3 X = 30.00 м ║

╠════════════════════════════════════════════════════════════╣

║ (T) - осадка, м ║

║ (O) - площадь шпангоута, м**2 ║

║ (B) - статический момент относительно ОY, м**3 ║

║ (C) - статический момент относительно ОZ, м**3 ║

║ (Z) - аппликата центра площади шпангоута, м ║

╠════════╤═══════════╤══════════════╤═════════════╤══════════╣

║ (T) │ (O) │ (B) │ (C) │ (Z) ║

╟────────┼───────────┼──────────────┼─────────────┼──────────╢

║ 11.00 │ 85.3 │ 98.0 │ 232.9 │ 5.46 ║

║ 10.45 │ 85.3 │ 98.0 │ 232.9 │ 5.46 ║

║ 9.90 │ 85.3 │ 98.0 │ 232.9 │ 5.46 ║

║ 9.35 │ 80.5 │ 90.7 │ 210.1 │ 5.22 ║

║ 8.80 │ 74.1 │ 81.4 │ 181.0 │ 4.88 ║

║ 8.25 │ 68.2 │ 73.5 │ 155.9 │ 4.57 ║

║ 7.70 │ 62.4 │ 65.8 │ 132.7 │ 4.25 ║

║ 7.15 │ 56.8 │ 58.6 │ 111.8 │ 3.94 ║

║ 6.60 │ 51.4 │ 52.1 │ 93.5 │ 3.63 ║

║ 6.05 │ 46.3 │ 46.1 │ 77.2 │ 3.34 ║

║ 5.50 │ 41.3 │ 40.4 │ 62.7 │ 3.04 ║

║ 4.95 │ 36.4 │ 34.9 │ 49.9 │ 2.74 ║

║ 4.40 │ 31.5 │ 29.6 │ 38.6 │ 2.45 ║

║ 3.85 │ 26.8 │ 24.5 │ 28.9 │ 2.15 ║

║ 3.30 │ 22.2 │ 19.6 │ 20.6 │ 1.86 ║

║ 2.75 │ 17.6 │ 14.9 │ 13.7 │ 1.55 ║

║ 2.20 │ 13.2 │ 10.6 │ 8.3 │ 1.25 ║

║ 1.65 │ 9.1 │ 6.7 │ 4.3 │ .94 ║

║ 1.10 │ 5.3 │ 3.5 │ 1.7 │ .63 ║

║ .55 │ 2.1 │ 1.1 │ .3 │ .32 ║

╚════════╧═══════════╧══════════════╧═════════════╧══════════╝

Таблица 3.1 (продолжение)

╔════════════════════════════════════════════════════════════╗

║ расчет масштаба Бонжана и кривых В.Г. Власова ║

╠════════════════════════════════════════════════════════════╣

║ шпангоут номер : 4 X = 20.00 м ║

╠════════════════════════════════════════════════════════════╣

║ (T) - осадка, м ║

║ (O) - площадь шпангоута, м**2 ║

║ (B) - статический момент относительно ОY, м**3 ║

║ (C) - статический момент относительно ОZ, м**3 ║

║ (Z) - аппликата центра площади шпангоута, м ║

╠════════╤═══════════╤══════════════╤═════════════╤══════════╣

║ (T) │ (O) │ (B) │ (C) │ (Z) ║

╟────────┼───────────┼──────────────┼─────────────┼──────────╢

║ 11.00 │ 119.8 │ 193.0 │ 298.6 │ 4.99 ║

║ 10.45 │ 119.8 │ 193.0 │ 298.6 │ 4.99 ║

║ 9.90 │ 119.8 │ 193.0 │ 298.6 │ 4.99 ║

║ 9.35 │ 118.5 │ 190.7 │ 293.0 │ 4.94 ║

║ 8.80 │ 110.8 │ 177.1 │ 257.9 │ 4.65 ║

║ 8.25 │ 103.1 │ 163.7 │ 225.0 │ 4.37 ║

║ 7.70 │ 95.5 │ 150.4 │ 194.6 │ 4.08 ║

║ 7.15 │ 87.9 │ 137.4 │ 166.6 │ 3.79 ║

║ 6.60 │ 80.5 │ 124.9 │ 141.0 │ 3.50 ║

║ 6.05 │ 73.1 │ 112.5 │ 117.7 │ 3.22 ║

║ 5.50 │ 65.8 │ 100.3 │ 96.6 │ 2.94 ║

║ 4.95 │ 58.5 │ 88.3 │ 77.5 │ 2.65 ║

║ 4.40 │ 51.3 │ 76.4 │ 60.6 │ 2.36 ║

║ 3.85 │ 44.1 │ 64.7 │ 45.8 │ 2.08 ║

║ 3.30 │ 37.0 │ 53.1 │ 33.1 │ 1.79 ║

║ 2.75 │ 29.9 │ 41.8 │ 22.4 │ 1.50 ║

║ 2.20 │ 23.0 │ 30.9 │ 13.8 │ 1.20 ║

║ 1.65 │ 16.3 │ 20.7 │ 7.4 │ .91 ║

║ 1.10 │ 9.9 │ 11.5 │ 3.0 │ .60 ║

║ .55 │ 4.2 │ 4.1 │ .6 │ .30 ║

╚════════╧═══════════╧══════════════╧═════════════╧══════════╝

Таблица 3.1 (продолжение)

╔════════════════════════════════════════════════════════════╗

║ расчет масштаба Бонжана и кривых В.Г. Власова ║

╠════════════════════════════════════════════════════════════╣

║ шпангоут номер : 5 X = 10.00 м ║

╠════════════════════════════════════════════════════════════╣

║ (T) - осадка, м ║

║ (O) - площадь шпангоута, м**2 ║

║ (B) - статический момент относительно ОY, м**3 ║

║ (C) - статический момент относительно ОZ, м**3 ║

║ (Z) - аппликата центра площади шпангоута, м ║

╠════════╤═══════════╤══════════════╤═════════════╤══════════╣

║ (T) │ (O) │ (B) │ (C) │ (Z) ║

╟────────┼───────────┼──────────────┼─────────────┼──────────╢

║ 11.00 │ 137.7 │ 255.8 │ 326.1 │ 4.74 ║

║ 10.45 │ 137.7 │ 255.8 │ 326.1 │ 4.74 ║

║ 9.90 │ 137.7 │ 255.8 │ 326.1 │ 4.74 ║

║ 9.35 │ 137.7 │ 255.8 │ 326.1 │ 4.74 ║

║ 8.80 │ 130.3 │ 241.7 │ 292.5 │ 4.49 ║

║ 8.25 │ 121.9 │ 225.8 │ 256.9 │ 4.21 ║

║ 7.70 │ 113.6 │ 210.0 │ 223.6 │ 3.94 ║

║ 7.15 │ 105.2 │ 194.1 │ 192.6 │ 3.66 ║

║ 6.60 │ 96.9 │ 178.3 │ 163.9 │ 3.38 ║

║ 6.05 │ 88.5 │ 162.5 │ 137.5 │ 3.11 ║

║ 5.50 │ 80.2 │ 146.6 │ 113.4 │ 2.83 ║

║ 4.95 │ 71.8 │ 130.8 │ 91.6 │ 2.55 ║

║ 4.40 │ 63.5 │ 115.0 │ 72.1 │ 2.27 ║

║ 3.85 │ 55.1 │ 99.2 │ 54.9 │ 1.99 ║

║ 3.30 │ 46.8 │ 83.5 │ 40.1 │ 1.71 ║

║ 2.75 │ 38.6 │ 68.0 │ 27.6 │ 1.43 ║

║ 2.20 │ 30.3 │ 52.6 │ 17.4 │ 1.15 ║

║ 1.65 │ 22.2 │ 37.4 │ 9.5 │ .86 ║

║ 1.10 │ 14.3 │ 23.2 │ 4.1 │ .57 ║

║ .55 │ 6.7 │ 10.3 │ 1.0 │ .28 ║

╚════════╧═══════════╧══════════════╧═════════════╧══════════╝

Таблица 3.1 (продолжение)

╔════════════════════════════════════════════════════════════╗

║ расчет масштаба Бонжана и кривых В.Г. Власова ║

╠════════════════════════════════════════════════════════════╣

║ шпангоут номер : 6 X = .00 м ║

╠════════════════════════════════════════════════════════════╣

║ (T) - осадка, м ║

║ (O) - площадь шпангоута, м**2 ║

║ (B) - статический момент относительно ОY, м**3 ║

║ (C) - статический момент относительно ОZ, м**3 ║

║ (Z) - аппликата центра площади шпангоута, м ║

╠════════╤═══════════╤══════════════╤═════════════╤══════════╣

║ (T) │ (O) │ (B) │ (C) │ (Z) ║

╟────────┼───────────┼──────────────┼─────────────┼──────────╢

║ 11.00 │ 139.1 │ 264.4 │ 322.9 │ 4.64 ║

║ 10.45 │ 139.1 │ 264.4 │ 322.9 │ 4.64 ║

║ 9.90 │ 139.1 │ 264.4 │ 322.9 │ 4.64 ║

║ 9.35 │ 139.1 │ 264.4 │ 322.9 │ 4.64 ║

║ 8.80 │ 133.5 │ 253.4 │ 297.3 │ 4.46 ║

║ 8.25 │ 125.0 │ 237.2 │ 261.3 │ 4.18 ║

║ 7.70 │ 116.5 │ 220.9 │ 227.6 │ 3.91 ║

║ 7.15 │ 108.1 │ 204.6 │ 196.1 │ 3.63 ║

║ 6.60 │ 99.6 │ 188.4 │ 167.1 │ 3.35 ║

║ 6.05 │ 91.2 │ 172.1 │ 140.3 │ 3.08 ║

║ 5.50 │ 82.7 │ 155.9 │ 115.9 │ 2.80 ║

║ 4.95 │ 74.2 │ 139.6 │ 93.8 │ 2.53 ║

║ 4.40 │ 65.8 │ 123.3 │ 74.0 │ 2.25 ║

║ 3.85 │ 57.3 │ 107.1 │ 56.6 │ 1.97 ║

║ 3.30 │ 48.9 │ 90.8 │ 41.5 │ 1.70 ║

║ 2.75 │ 40.4 │ 74.5 │ 28.7 │ 1.42 ║

║ 2.20 │ 31.9 │ 58.3 │ 18.2 │ 1.14 ║

║ 1.65 │ 23.5 │ 42.1 │ 10.1 │ .86 ║

║ 1.10 │ 15.2 │ 26.4 │ 4.3 │ .57 ║

║ .55 │ 7.1 │ 11.6 │ 1.0 │ .28 ║

╚════════╧═══════════╧══════════════╧═════════════╧══════════╝

Таблица 3.1 (продолжение)

╔════════════════════════════════════════════════════════════╗

║ расчет масштаба Бонжана и кривых В.Г. Власова ║

╠════════════════════════════════════════════════════════════╣

║ шпангоут номер : 7 X = -10.00 м ║

╠════════════════════════════════════════════════════════════╣

║ (T) - осадка, м ║

║ (O) - площадь шпангоута, м**2 ║

║ (B) - статический момент относительно ОY, м**3 ║

║ (C) - статический момент относительно ОZ, м**3 ║

║ (Z) - аппликата центра площади шпангоута, м ║

╠════════╤═══════════╤══════════════╤═════════════╤══════════╣

║ (T) │ (O) │ (B) │ (C) │ (Z) ║

╟────────┼───────────┼──────────────┼─────────────┼──────────╢

║ 11.00 │ 134.2 │ 249.7 │ 316.2 │ 4.71 ║

║ 10.45 │ 134.2 │ 249.7 │ 316.2 │ 4.71 ║

║ 9.90 │ 134.2 │ 249.7 │ 316.2 │ 4.71 ║

║ 9.35 │ 134.2 │ 249.7 │ 316.2 │ 4.71 ║

║ 8.80 │ 129.6 │ 240.8 │ 295.6 │ 4.56 ║

║ 8.25 │ 121.2 │ 224.5 │ 259.5 │ 4.28 ║

║ 7.70 │ 112.7 │ 208.3 │ 225.8 │ 4.01 ║

║ 7.15 │ 104.3 │ 192.0 │ 194.4 │ 3.73 ║

║ 6.60 │ 95.8 │ 175.7 │ 165.3 │ 3.45 ║

║ 6.05 │ 87.3 │ 159.5 │ 138.6 │ 3.17 ║

║ 5.50 │ 78.9 │ 143.2 │ 114.1 │ 2.89 ║

║ 4.95 │ 70.4 │ 127.0 │ 92.0 │ 2.61 ║

║ 4.40 │ 62.0 │ 110.7 │ 72.3 │ 2.33 ║

║ 3.85 │ 53.5 │ 94.4 │ 54.8 │ 2.05 ║

║ 3.30 │ 45.1 │ 78.3 │ 39.7 │ 1.76 ║

║ 2.75 │ 36.7 │ 62.2 │ 27.0 │ 1.47 ║

║ 2.20 │ 28.4 │ 46.6 │ 16.8 │ 1.18 ║

║ 1.65 │ 20.3 │ 31.9 │ 9.0 │ .89 ║

║ 1.10 │ 12.7 │ 18.5 │ 3.7 │ .59 ║

║ .55 │ 5.6 │ 7.3 │ .8 │ .29 ║

╚════════╧═══════════╧══════════════╧═════════════╧══════════╝

Таблица 3.1 (продолжение)

╔════════════════════════════════════════════════════════════╗

║ расчет масштаба Бонжана и кривых В.Г. Власова ║

╠════════════════════════════════════════════════════════════╣

║ шпангоут номер : 8 X = -20.00 м ║

╠════════════════════════════════════════════════════════════╣

║ (T) - осадка, м ║

║ (O) - площадь шпангоута, м**2 ║

║ (B) - статический момент относительно ОY, м**3 ║

║ (C) - статический момент относительно ОZ, м**3 ║

║ (Z) - аппликата центра площади шпангоута, м ║

╠════════╤═══════════╤══════════════╤═════════════╤══════════╣

║ (T) │ (O) │ (B) │ (C) │ (Z) ║

╟────────┼───────────┼──────────────┼─────────────┼──────────╢

║ 11.00 │ 121.9 │ 210.2 │ 301.9 │ 4.95 ║

║ 10.45 │ 121.9 │ 210.2 │ 301.9 │ 4.95 ║

║ 9.90 │ 121.9 │ 210.2 │ 301.9 │ 4.95 ║

║ 9.35 │ 121.9 │ 210.2 │ 301.9 │ 4.95 ║

║ 8.80 │ 117.3 │ 201.3 │ 281.3 │ 4.80 ║

║ 8.25 │ 108.8 │ 185.0 │ 245.2 │ 4.51 ║

║ 7.70 │ 100.3 │ 168.8 │ 211.5 │ 4.22 ║

║ 7.15 │ 91.9 │ 152.7 │ 180.2 │ 3.92 ║

║ 6.60 │ 83.6 │ 136.9 │ 151.6 │ 3.63 ║

║ 6.05 │ 75.3 │ 121.3 │ 125.4 │ 3.33 ║

║ 5.50 │ 67.1 │ 106.1 │ 101.8 │ 3.03 ║

║ 4.95 │ 59.1 │ 91.3 │ 80.7 │ 2.73 ║

║ 4.40 │ 51.1 │ 77.0 │ 62.2 │ 2.43 ║

║ 3.85 │ 43.4 │ 63.4 │ 46.2 │ 2.13 ║

║ 3.30 │ 35.8 │ 50.5 │ 32.7 │ 1.83 ║

║ 2.75 │ 28.6 │ 38.4 │ 21.7 │ 1.52 ║

║ 2.20 │ 21.6 │ 27.4 │ 13.1 │ 1.21 ║

║ 1.65 │ 15.1 │ 17.7 │ 6.8 │ .90 ║

║ 1.10 │ 9.2 │ 9.8 │ 2.7 │ .60 ║

║ .55 │ 4.0 │ 3.6 │ .6 │ .29 ║

╚════════╧═══════════╧══════════════╧═════════════╧══════════╝

Таблица 3.1 (продолжение)

╔════════════════════════════════════════════════════════════╗

║ расчет масштаба Бонжана и кривых В.Г. Власова ║

╠════════════════════════════════════════════════════════════╣

║ шпангоут номер : 9 X = -30.00 м ║

╠════════════════════════════════════════════════════════════╣

║ (T) - осадка, м ║

║ (O) - площадь шпангоута, м**2 ║

║ (B) - статический момент относительно ОY, м**3 ║

║ (C) - статический момент относительно ОZ, м**3 ║

║ (Z) - аппликата центра площади шпангоута, м ║

╠════════╤═══════════╤══════════════╤═════════════╤══════════╣

║ (T) │ (O) │ (B) │ (C) │ (Z) ║

╟────────┼───────────┼──────────────┼─────────────┼──────────╢

║ 11.00 │ 96.4 │ 142.7 │ 262.7 │ 5.45 ║

║ 10.45 │ 96.4 │ 142.7 │ 262.7 │ 5.45 ║

║ 9.90 │ 96.4 │ 142.7 │ 262.7 │ 5.45 ║

║ 9.35 │ 96.4 │ 142.7 │ 262.7 │ 5.45 ║

║ 8.80 │ 91.7 │ 133.7 │ 241.5 │ 5.27 ║

║ 8.25 │ 83.5 │ 118.3 │ 206.5 │ 4.95 ║

║ 7.70 │ 75.3 │ 103.1 │ 173.9 │ 4.62 ║

║ 7.15 │ 67.1 │ 88.0 │ 143.6 │ 4.28 ║

║ 6.60 │ 59.2 │ 73.9 │ 116.5 │ 3.93 ║

║ 6.05 │ 51.7 │ 61.0 │ 92.7 │ 3.59 ║

║ 5.50 │ 44.4 │ 48.9 │ 71.7 │ 3.23 ║

║ 4.95 │ 37.8 │ 38.9 │ 54.3 │ 2.88 ║

║ 4.40 │ 31.6 │ 30.2 │ 39.8 │ 2.52 ║

║ 3.85 │ 26.0 │ 23.1 │ 28.3 │ 2.18 ║

║ 3.30 │ 21.0 │ 17.5 │ 19.4 │ 1.85 ║

║ 2.75 │ 16.5 │ 12.9 │ 12.6 │ 1.53 ║

║ 2.20 │ 12.5 │ 9.1 │ 7.6 │ 1.21 ║

║ 1.65 │ 8.7 │ 6.0 │ 4.0 │ .91 ║

║ 1.10 │ 5.3 │ 3.3 │ 1.6 │ .60 ║

║ .55 │ 2.3 │ 1.2 │ .3 │ .30 ║

╚════════╧═══════════╧══════════════╧═════════════╧══════════╝

Таблица 3.1 (продолжение)

╔════════════════════════════════════════════════════════════╗

║ расчет масштаба Бонжана и кривых В.Г. Власова ║

╠════════════════════════════════════════════════════════════╣

║ шпангоут номер : 10 X = -40.00 м ║

╠════════════════════════════════════════════════════════════╣

║ (T) - осадка, м ║

║ (O) - площадь шпангоута, м**2 ║

║ (B) - статический момент относительно ОY, м**3 ║

║ (C) - статический момент относительно ОZ, м**3 ║

║ (Z) - аппликата центра площади шпангоута, м ║

╠════════╤═══════════╤══════════════╤═════════════╤══════════╣

║ (T) │ (O) │ (B) │ (C) │ (Z) ║

╟────────┼───────────┼──────────────┼─────────────┼──────────╢

║ 11.00 │ 62.8 │ 72.2 │ 194.4 │ 6.19 ║

║ 10.45 │ 62.8 │ 72.2 │ 194.4 │ 6.19 ║

║ 9.90 │ 62.8 │ 72.2 │ 194.4 │ 6.19 ║

║ 9.35 │ 62.8 │ 72.2 │ 194.4 │ 6.19 ║

║ 8.80 │ 56.2 │ 61.0 │ 164.4 │ 5.85 ║

║ 8.25 │ 49.3 │ 50.0 │ 134.9 │ 5.47 ║

║ 7.70 │ 42.3 │ 39.1 │ 107.2 │ 5.06 ║

║ 7.15 │ 35.8 │ 29.6 │ 83.1 │ 4.64 ║

║ 6.60 │ 30.1 │ 22.2 │ 63.5 │ 4.22 ║

║ 6.05 │ 24.8 │ 15.6 │ 46.5 │ 3.76 ║

║ 5.50 │ 19.9 │ 10.3 │ 32.5 │ 3.27 ║

║ 4.95 │ 16.2 │ 7.1 │ 22.7 │ 2.81 ║

║ 4.40 │ 13.5 │ 5.5 │ 16.5 │ 2.45 ║

║ 3.85 │ 11.5 │ 4.6 │ 12.3 │ 2.15 ║

║ 3.30 │ 9.6 │ 3.7 │ 9.0 │ 1.87 ║

║ 2.75 │ 7.7 │ 2.9 │ 6.1 │ 1.58 ║

║ 2.20 │ 5.8 │ 2.1 │ 3.7 │ 1.29 ║

║ 1.65 │ 3.9 │ 1.3 │ 1.9 │ .98 ║

║ 1.10 │ 2.2 │ .6 │ .7 │ .66 ║

║ .55 │ .8 │ .2 │ .1 │ .34 ║

╚════════╧═══════════╧══════════════╧═════════════╧══════════╝

Таблица 3.1 (продолжение)

╔════════════════════════════════════════════════════════════╗

║ расчет масштаба Бонжана и кривых В.Г. Власова ║

╠════════════════════════════════════════════════════════════╣

║ шпангоут номер : 11 X = -50.00 м ║

╠════════════════════════════════════════════════════════════╣

║ (T) - осадка, м ║

║ (O) - площадь шпангоута, м**2 ║

║ (B) - статический момент относительно ОY, м**3 ║

║ (C) - статический момент относительно ОZ, м**3 ║

║ (Z) - аппликата центра площади шпангоута, м ║

╠════════╤═══════════╤══════════════╤═════════════╤══════════╣

║ (T) │ (O) │ (B) │ (C) │ (Z) ║

╟────────┼───────────┼──────────────┼─────────────┼──────────╢

║ 11.00 │ 24.1 │ 19.7 │ 95.8 │ 7.96 ║

║ 10.45 │ 24.1 │ 19.7 │ 95.8 │ 7.96 ║

║ 9.90 │ 24.1 │ 19.7 │ 95.8 │ 7.96 ║

║ 9.35 │ 21.8 │ 17.3 │ 85.0 │ 7.80 ║

║ 8.80 │ 17.3 │ 12.8 │ 64.8 │ 7.48 ║

║ 8.25 │ 13.2 │ 8.9 │ 47.3 │ 7.15 ║

║ 7.70 │ 9.4 │ 5.7 │ 32.2 │ 6.82 ║

║ 7.15 │ 6.1 │ 3.1 │ 19.7 │ 6.49 ║

║ 6.60 │ 3.3 │ 1.4 │ 10.2 │ 6.15 ║

║ 6.05 │ 1.2 │ .3 │ 3.4 │ 5.82 ║

║ 5.50 │ .0 │ .0 │ .0 │ 5.48 ║

║ 4.95 │ -- │ -- │ -- │ -- ║

║ 4.40 │ -- │ -- │ -- │ -- ║

║ 3.85 │ -- │ -- │ -- │ -- ║

║ 3.30 │ -- │ -- │ -- │ -- ║

║ 2.75 │ -- │ -- │ -- │ -- ║

║ 2.20 │ -- │ -- │ -- │ -- ║

║ 1.65 │ -- │ -- │ -- │ -- ║

║ 1.10 │ -- │ -- │ -- │ -- ║

║ .55 │ -- │ -- │ -- │ -- ║

╚════════╧═══════════╧══════════════╧═════════════╧══════════╝

Для посадки судна по ГВЛ прямо и на ровный киль необходимо рассчитать вес принимаемого балласта P и определить центр его тяжести Xg. Данные величины рассчитываются с использованием кривых теоретического чертежа.

Значения V и Xcснимаем с соответствующих кривых теоретического чертежа на пересечении их с ГВЛ.

Как видим, вычисленные нами расчетные значения отличаются от полученных в программе S1 незначительно. Расхождение составляет 60т. и 0.06м. соответственно.

4. РАСЧЕТ ПОСАДКИ И ОСТОЙЧИВОСТИ СУДНА

Плавучестью называют способность судна путем вытеснения равного ему по весу и массе количества воды поддерживать вертикальное равновесие в заданном положении относительно поверхности моря.

Мерами плавучести судна являются его объемное водоизмещение Vи водоизмещение (масса) судна D= V, где — плотность забортной воды, т/м3.

На судно, плавающее в положении равновесия на спокойной поверхности воды, действуют силы веса всех его частей и силы гидростатического давления воды на подводную часть его корпуса. Эти силы приводятся к двум равнодействующим: силе веса Р, действующей вертикально вниз, приложенной в центре тяжести судна Gи являющейся равнодействующей сил веса всех его частей, и силе плавучести V, действующей вертикально вверх, приложенной в центре величины (центре тяжести подводного объема) судна С и являющейся равнодействующей вертикальных составляющих гидростатических сил давления воды на подводную часть его корпуса. Здесь — удельный вес забортной воды, кН/м3.

Горизонтальные составляющие гидростатических сил давления воды взаимно уравновешиваются.

Свободно плавающее судно занимает такое положение, при котором его центр величины располагается на одной вертикали с центром тяжести. При этом судно может иметь крен и дифферент.

Величина крена и дифферента характеризует посадку судна.

Остойчивость можно определить как способность судна, отклоненного внешним моментом от положения равновесия, возвращаться в исходное положение равновесия после устранения момента, вызвавшего отклонение.


Рис. 4.1 Определение координат центра величины и плеч остойчивости формы

Плечо остойчивости (плечо восстанавливающего момента):

Производная плеча статической остойчивости по углу крена есть возвышение метацентра над центром тяжести корабля или обобщенная метацентрическая высота:

При динамическом воздействии внешних сил в качестве меры остойчивости используется работа восстанавливающего момента Т в процессе наклонения до угла Q:

Рис. 4.2 Пример диаграммы динамической остойчивости

Кривая lдин(Q) является интегральной кривой по отношению к диаграмме статической остойчивости и называется диаграммой динамической остойчивости.

Здесь и далее, при проведении расчетов полагаем, что данное судно – пассажирское судно неограниченного района плавания. Форма обводов корпуса, коэффициент общей полноты (0,576) и коэффициент полноты ватерлинии корпуса (0,733) характерны именно для пассажирских судов.

В данном разделе приведены результаты расчетов посадки и остойчивости судна.


программа S1 - DERGUNOV.OS5 Таблица 4.1

╔════════════════════════════════════════════════════════════════════╗

║ Расчет посадки и остойчивости - исходные данные Вариант : 05 ║

╟────────────────────────────┬───────────┬─────────┬────────┬────────╢

║ название статьи нагрузки │ P,т │ Xg,м │ Yg,м │ Zg,м ║

╟────────────────────────────┼───────────┼─────────┼────────┼────────╢

║ корпус металлический │ 1607.00 │ -1.91 │ .00 │ 4.87 ║

╟────────────────────────────┼───────────┼─────────┼────────┼────────╢

║ балласт │ 4224.00 │ -.57 │ .00 │ 6.00 ║

╟────────────────────────────┼───────────┼─────────┼────────┼────────╢

║ сумма │ 5831.00 │ -.94 │ .00 │ 5.69 ║

╚════════════════════════════╧═══════════╧═════════╧════════╧════════╝

Рис. 4.3. Посадка судна в грузу

Рис. 4.4. Наклонения судна в грузу


Таблица 4.2

╔════════════════════════════════════════════════════╗

║ Pасчет посадки и остойчивости ║

║ Результаты - Вариант 05 ║

╟────────────────────────────────────────────────────╢

║ водоизмещение, м**3 5688.76 ║

║ крен, град .00 ║

║ дифферент, град .00 ║

║ осадка носом, м 6.15 ║

║ осадка на миделе, м 6.15 ║

║ осадка кормой, м 6.15 ║

║ нач. попер. метацентр. высота, м .61 ║

╟────────────────────────────────────────────────────╢

║ Pасчет с учетом сопутствующего дифферента ║

╟────────────────────────────────────────────────────╢

║ (O) - угол крена, град ║

║ (Tm) - осадка на ДП, м ║

║ (Yc) - ордината центра величины, м ║

║ (Zc) - аппликата центра величины, м ║

║ (ls) - плечо статической остойчивости, м ║

║ (ld) - плечо динамической остойчивости, м ║

╟───────┬────────┬────────┬────────┬────────┬────────╢

║ (O) │ (Tm) │ (Yc) │ (Zc) │ (ls) │ (ld) ║

╟───────┼────────┼────────┼────────┼────────┼────────╢

║ .00 │ 6.15 │ .00 │ 3.32 │ .00 │ .00 ║

║ 2.50 │ 6.15 │ .13 │ 3.33 │ .03 │ .00 ║

║ 5.00 │ 6.12 │ .27 │ 3.32 │ .06 │ .00 ║

║ 7.50 │ 6.12 │ .40 │ 3.34 │ .09 │ .01 ║

║ 10.00 │ 6.15 │ .53 │ 3.38 │ .13 │ .01 ║

║ 15.00 │ 6.10 │ .81 │ 3.43 │ .20 │ .02 ║

║ 20.00 │ 6.10 │ 1.09 │ 3.53 │ .29 │ .04 ║

║ 25.00 │ 6.07 │ 1.36 │ 3.61 │ .36 │ .07 ║

║ 30.00 │ 6.07 │ 1.61 │ 3.73 │ .41 │ .11 ║

║ 35.00 │ 6.13 │ 1.81 │ 3.86 │ .44 │ .14 ║

║ 40.00 │ 6.23 │ 1.98 │ 4.00 │ .43 │ .18 ║

║ 45.00 │ 6.35 │ 2.12 │ 4.14 │ .41 │ .22 ║

║ 50.00 │ 6.45 │ 2.25 │ 4.25 │ .35 │ .25 ║

║ 55.00 │ 6.60 │ 2.36 │ 4.38 │ .28 │ .28 ║

║ 60.00 │ 6.95 │ 2.41 │ 4.49 │ .17 │ .30 ║

║ 65.00 │ 7.25 │ 2.49 │ 4.59 │ .05 │ .31 ║

║ 70.00 │ 8.00 │ 2.50 │ 4.70 │ -.07 │ .31 ║

║ 75.00 │ 8.75 │ 2.50 │ 4.80 │ -.21 │ .29 ║

║ 80.00 │ 8.75 │ 2.50 │ 4.80 │ -.21 │ .28 ║

╚═══════╧════════╧════════╧════════╧════════╧════════╝

Рис. 4.5. Диаграммы статической и динамической остойчивости

5. РАСЧЕТ ПОСАДКИ И ОСТОЙЧИВОСТИ ПОВРЕЖДЕННОГО СУДНА

Непотопляемостью называется способность судна оставаться на плаву после затопления части внутренних помещений (отсеков), имея посадку и остойчивость, обеспечивающие хотя бы ограниченное использование его по назначению.

Необходимым условием обеспечения непотопляемости является подразделение судна на отсеки водонепроницаемыми переборками, палубами и платформами.

Отношение объема воды в отсеке к теоретическому объему отсека при том же уровне воды носит название коэффициента проницаемости отсека.

При выполнении расчетов непотопляемости принимают следующие значения условных коэффициентов проницаемости для судовых помещений различного назначения:

Помещения, занятые главными механизмами и электростанциями…………………………………………………………....0,85

Жилые помещения и кладовые с запасами ........................................0,95

Пустые цистерны и порожние нерефрижераторные трюмы ……… 0,98

Помещения, занятые генеральным или сыпучим (кроме руды) грузом………………………………………………………..……..……….. 0,60

Помещения, занятые лесным грузом .. …………………………….. 0,35

В данном разделе приведены результаты расчетов посадки и остойчивости поврежденного судна со следующими координатами повреждения: Хн=40.00 м; Хк=20.00 м. Поврежденный отсек принят как помещение, занятое генеральным грузом (студенты навалом) с коэффициентом проницаемости 0.60.


Рис. 5.1 Трехмерная математическая модель корпуса поврежденного судна

расчет поврежденного судна ( 40.00/ 20.00/0.60) таблица 5.1

╔════════════════════════════════════════════════════════════════════╗

║ Расчет посадки и остойчивости - исходные данные Вариант : 05 ║

╟────────────────────────────┬───────────┬─────────┬────────┬────────╢

║ название статьи нагрузки │ P,т │ Xg,м │ Yg,м │ Zg,м ║

╟────────────────────────────┼───────────┼─────────┼────────┼────────╢

║ корпус металлический │ 1607.00 │ -1.91 │ .00 │ 4.87 ║

╟────────────────────────────┼───────────┼─────────┼────────┼────────╢

║ балласт │ 4224.00 │ -.57 │ .00 │ 6.00 ║

╟────────────────────────────┼───────────┼─────────┼────────┼────────╢

║ сумма │ 5831.00 │ -.94 │ .00 │ 5.69 ║

╚════════════════════════════╧═══════════╧═════════╧════════╧════════╝

Рис. 5.2 Посадка поврежденного судна

Рис. 5.3 Наклонения поврежденного судна

Таблица 5.2

╔════════════════════════════════════════════════════╗

║ Pасчет посадки и остойчивости ║

║ Результаты - Вариант 05 ║

╟────────────────────────────────────────────────────╢

║ водоизмещение, м**3 5688.71 ║

║ крен, град .00 ║

║ дифферент, град 2.38 ║

║ осадка носом, м 9.06 ║

║ осадка на миделе, м 6.98 ║

║ осадка кормой, м 4.90 ║

║ нач. попер. метацентр. высота, м .63 ║

╟────────────────────────────────────────────────────╢

║ Pасчет с учетом сопутствующего дифферента ║

╟────────────────────────────────────────────────────╢

║ (O) - угол крена, град ║

║ (Tm) - осадка на ДП, м ║

║ (Yc) - ордината центра величины, м ║

║ (Zc) - аппликата центра величины, м ║

║ (ls) - плечо статической остойчивости, м ║

║ (ld) - плечо динамической остойчивости, м ║

╟───────┬────────┬────────┬────────┬────────┬────────╢

║ (O) │ (Tm) │ (Yc) │ (Zc) │ (ls) │ (ld) ║

╟───────┼────────┼────────┼────────┼────────┼────────╢

║ .00 │ 6.95 │ .00 │ 3.69 │ .00 │ .00 ║

║ 2.50 │ 6.95 │ .12 │ 3.69 │ .03 │ .00 ║

║ 5.00 │ 6.95 │ .24 │ 3.70 │ .06 │ .00 ║

║ 7.50 │ 6.98 │ .35 │ 3.73 │ .09 │ .01 ║

║ 10.00 │ 6.98 │ .47 │ 3.75 │ .13 │ .01 ║

║ 15.00 │ 6.93 │ .72 │ 3.79 │ .20 │ .02 ║

║ 20.00 │ 6.95 │ .94 │ 3.88 │ .27 │ .04 ║

║ 25.00 │ 6.95 │ 1.15 │ 3.95 │ .31 │ .07 ║

║ 30.00 │ 7.08 │ 1.31 │ 4.06 │ .32 │ .10 ║

║ 35.00 │ 7.18 │ 1.47 │ 4.15 │ .32 │ .12 ║

║ 40.00 │ 7.33 │ 1.61 │ 4.23 │ .30 │ .15 ║

║ 45.00 │ 7.63 │ 1.71 │ 4.33 │ .25 │ .18 ║

║ 50.00 │ 8.03 │ 1.79 │ 4.43 │ .18 │ .19 ║

║ 55.00 │ 8.48 │ 1.87 │ 4.52 │ .11 │ .21 ║

║ 60.00 │ 8.63 │ 1.87 │ 4.59 │ -.01 │ .21 ║

║ 65.00 │ 9.03 │ 1.87 │ 4.68 │ -.13 │ .21 ║

║ 70.00 │ 9.03 │ 1.87 │ 4.68 │ -.13 │ .20 ║

║ 75.00 │ 9.03 │ 1.87 │ 4.68 │ -.13 │ .18 ║

║ 80.00 │ 9.03 │ 1.87 │ 4.68 │ -.13 │ .17 ║

╚═══════╧════════╧════════╧════════╧════════╧════════╝

Рис. 5.4. Диаграммы статической и динамической остойчивости поврежденного судна


6. СВОДНЫЕ ДАННЫЕ

Таблица 6.1 Таблица посадки и остойчивости.

Требования РегистраСудно в грузу
Осадка носом, м-6,15
Осадка кормой, м-6,15
Осадка на миделе, м-6,15

Исправленная поперечная

метацентрическая высота, м

0.61м

Максимальное плечо диаграммы

статической остойчивости, м

0,44м
Площадь под положительной частью диаграммы статической остойчивости

0.1

0.14

0.07

соответственно

Угол заката диаграммы статической

остойчивости, град

670

Таблица непотопляемости. Таблица 6.2

Требования Регистра
Повреждение

Грузовой трюм с координатами:

Хн=40 м;

Хк=20 м.

Вхождение предельной линии погружения в воду (линия главной палубы)Удовлетворяет требованиям Регистра
Аварийные углы крена
Значение поперечной метацентрической высоты в конечной стадии затопления0.63м
Наличие достаточной площади участков с положительными плечами диаграммы статической остойчивостиПротяженность участка диаграммы с положительными плечами составляет 590
Значение максимального плеча диаграммы аварийной остойчивости0,32м

7. ПРОВЕРКА ПО КРИТЕРИЮ ПОГОДЫ И УСКОРЕНИЯ

Руководство по проведению расчетов по этим параметрам и необходимая справочная информация содержатся в «Правилах классификации и постройки морских судов» (ч. IV«Остойчивость»,) Регистра РФ.



k=1

X1=0.98 (находится по таблице).

X2=0.855 (находится по таблице).

Период качки:

,где

Строим диаграмму статической остойчивости и по вычисленной амплитуде качки определяем плечо опрокидывающего момента:

Опрокидывающий момент:

, условие выполняется.

-необходима проверка по критерию ускорения:



-коэффициент, зависящий от отношения В/Т


-коэффициент, зависящий от отношения коэффициента общей полноты


-коэффициент, зависящий от

Условие выполняется.

Заключение

Проведенные нами расчеты показали, что в рассмотренном варианте нагрузки и повреждения данное пассажирское судно неограниченного района плавания удовлетворяет требованиям к посадке, остойчивости и непотопляемости судов, регламентированным «Правилами классификации и постройки морских судов» (ч. IV «Остойчивость», ч. V «Деление на отсеки») Регистра РФ, включая требования к критерию погоды, ускорения и элементам диаграммы статической остойчивости.

СПИСОК ЛИТЕРАТУРЫ

1. Дорогостайский Д.В., Жученко М.М., Мальцев Н.Я. Теория и устройство судна. Учебник для ВУЗов. Л.: Судостроение, 1976.

2. Семенов-Тян-Шанский В.В. Статика и динамика корабля. Учебник для ВУЗов. Л.: Судпромгиз, 1960.

3. Цуренко Ю.И. Расчеты по статике корабля с использованием ЭВМ. Учебное пособие. Северодвинск, СЕВМАШВТУЗ, 2000.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно