Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Магнитопорошковый метод контроля

Тип Реферат
Предмет Промышленность и производство
Просмотров
929
Размер файла
26 б
Поделиться

Ознакомительный фрагмент работы:

Магнитопорошковый метод контроля

Министерство образования Российской Федерации

Федеральное агентство по образованию

ГОУ СПО «Выксунский металлургический техникум»

РЕФЕРАТ

МАГНИТОПОРОШКОВЫЙ МЕТОД КОНТРОЛЯ

Выполнил:

Студент гр. Э-06

Морозов А.В.

Проверил:

Лунёв К.П.

2009


Содержание

1. Магнитные методы неразрушающего контроля

2. Магнитопорошковый метод

3. Этапы магнитопорошкового контроля

Заключение

1. Магнитные методы неразрушающего контроля

Магнитные методы неразрушающего контроля решают следующие задачи:

феррозондовый метод контроля применяется для выявления поверхностных и под поверхностных (глубиной до 10 мм) дефектов типа нарушения сплошности материала: волосовины, трещин, раковин, закатов, плен и т.п., а также для выявления дефектов типа нарушения сплошности сварных соединений и для контроля качества структуры и геометрических размеров изделий, используется для определения степени размагниченности изделий после магнитного контроля;

этот метод можно применять на изделиях любых размеров и форм, если отношение их длины к наибольшему размеру в поперечном направлении и их магнитные свойства дают возможность намагничивания до степени, достаточной для создания магнитного поля рассеяния дефекта, обнаруживаемого с помощью преобразователя;

магнитографическим методом контроля выявляют дефекты типа нарушения сплошности материала изделий, в основном для контроля сварных стыковых соединений из ферромагнитных материалов при их толщине от 1 до 18 мм.

Вихретоковый метод неразрушающего контроля основан на анализе взаимодействия внешнего электромагнитного поля с электромагнитным полем вихревых токов, наводимых в объект контроля этим полем.

Данный метод применяют для контроля деталей, изготовленных из электропроводящих материалов.

Особенности присущие вихретоковым методам: многопараметровость, бесконтактный контроль, нечувствительность к изменению влажности» давления и загрязненности газовой среды и поверхности объектов контроля непроводящими веществами.

Вихретоковые методы имеют два основных ограничения:

во-первых, их применяют только для контроля электропроводящих изделий; во-вторых, они имеют малую глубину контроля, связанную с особенностями проникновения электромагнитных волн в объект контроля.

Контрольно-измерительные задачи, решаемые с помощью вихретоковых методов:

позволяют обнаружить трещины, раковины, неметаллические включения и другие виды нарушений сплошности (дефектоскопия);

измерять толщины прутков, стенок труб (при одностороннем доступе), диаметр проволок, а так же толщины лакокрасочных, эмалевых, керамических, гальванических и других покрытий, нанесенных на электропроводящую основу (толщинометрия);

контролировать химический состав, механические свойства, остаточные напряжения (структуроскопия).

Неразрушающий контроль осуществляют с помощью СНК (средств неразрушающего контроля): приборов (дефектоскопов, толщиномеров, структуроскопов и т.д.) и установок, а также дефектоскопических веществ и материалов (проникающих и проявляющих жидкостей, магнитных порошков и суспензий, паст и т.д.), стандартных образцов, вспомогательного оборудования.

Дефектоскопы представляют собой приборы и установки, предназначенные для обнаружения дефектов типа нарушения сплошности.

Практически все дефектоскопы не только выявляют дефекты в изделии, но и определяют с установленной погрешностью его размеры и местонахождение. Некоторые дефектоскопы способны обнаруживать дефекты, определять глубину их и координаты относительно плоскостей изделия.

Структуроскопы в зависимости от их принципа действия могут определять физико-химические свойства материала, оценивать твердость и прочность материалов, глубину и качество термической обработки, обнаруживать отклонение содержания углерода от номинального значения, рассортировывать изделия по твердости, выявлять неоднородные по структуре области.

Принципиальный шаг вперед в области методов магнитного неразрушающего контроля был сделан после изобретения Е.М. Беловым "Способ прогнозирования местоположения течей трубопроводов", позволяющего выявлять аномальные участки трубопровода с поверхности земли за счет бесконтактного измерения его магнитного поля. На базе этого способа реализовано техническое устройство ИАМ-1. Из публикаций о результатах применения данного прибора можно сделать вывод о его достаточной эффективности в качестве индикатора аномальных участков трубопровода с отклонениями уровня напряженно-деформированного состояния металла от фоновых значений. Однако методические основы обследования указанным прибором для выявления точного местоположения, вида и опасности дефектов металла в печати или в нормативных документах не отражены и не могут быть проанализированы. Недостатком метода является отсутствие системы автоматической регистрации с заданным шагом (т.е. сканирования), т.е. появляется зависимость от человеческого фактора. Эффективность применения данной технологии может быть оценена широким кругом специалистов по НК лишь при публикации достаточно обширной статистики вскрытий по результатам обследований.

2. Магнитопорошковый метод

Магнитопорошковый методпредназначен для выявления поверхностных и под поверхностных (на глубине до (1,5 ... 2) мм) дефектов типа нарушения сплошности материала изделия: трещины, волосовины, расслоения, не проварка стыковых сварных соединений, закатов и т.д.

Магнитные частицы порошка, попадая в поле дефекта под действием электрического тока 7, намагничиваются и в результате притягивающей сипы перемещаются в зону наибольшей неоднородности магнитного по­ля. Порошинки, притягиваясь друг к другу, выстраиваются в цепочки, ориентируясь по магнитным силовым линиям поля 2, и, накапливаясь, образуют характерные рисунки в виде валиков 3, по которым судят о на­личии дефекта 4.

Этим методом можно контролировать изделия любых габаритных размеров и форм, если магнитные свойства материала изделия (относительная максимальная магнитная проницаемость не менее 40) позволяют намагничивать его до степени, достаточной для создания поля рассеяния дефекта, способного притянуть частицы ферромагнитного порошка.

Магнитопорошковый метод - это метод неразрушающего контроля поверхностей изделий из ферромагнитных материалов в их производстве и эксплуатации, суть которого такова: магнитный поток в бездефектной части изделия не меняет своего направления; если же на пути его встречаются участки с пониженной магнитной проницаемостью, например дефекты в виде разрыва сплошности металла (трещины, неметаллические включения и т.д.), то часть силовых линий магнитного поля выходит из детали наружу и входит в нее обратно, при этом возникают местные магнитные полюсы (N и S) и, как следствие, магнитное поле над дефектом. Так как магнитное поле над дефектом неоднородно, то на магнитные частицы, попавшие в это поле, действует сила, стремящаяся затянуть частицы в место наибольшей концентрации магнитных силовых линий, то есть к дефекту. Частицы в области поля дефекта намагничиваются и притягиваются друг к другу как магнитные диполи под действием силы так, что образуют цепочные структуры, ориентированные по магнитным силовым линиям поля.

Наибольшая вероятность выявления дефектов достигается в случае, когда плоскость дефекта составляет угол 90грд. с направлением намагничивающего поля (магнитного потока). С уменьшением этого угла чувствительность снижается и при углах, существенно меньших 90грд. дефекты могут быть не обнаружены.

Чувствительность МПД определяется:

магнитными характеристиками материала контролируемого изделия (магнитной индукцией (В),

остаточной намагниченностью (Br ),

максимальной магнитной проницаемостью (µmax ),

коэрцитивной силой (Н0),

шероховатостью поверхности контроля,

напряженностью намагничивающего поля, его ориентацией по отношению к плоскости дефекта,

качеством дефектоскопических средств и освещенностью контролируемой поверхности.

Магнитопорошковый метод применяется практически во всех отраслях промышленности:

авиапромышленность

машиностроение

автомобильная промышленность

металлургия

транспорт (авиация, железнодорожный, автотранспорт)

судостроение

строительство (стальные конструкции, трубопроводы)

Методика применения

Магнитопорошковый метод применяется для выявления в объектах разных размеров и формы, изготовленных из ферромагнитных материалов поверхностных и подповерхностных дефектов. С помощью магнитопорошкового метода могут быть обнаружены различные трещины, волосовины и закаты, непровары сварных соединений и другие дефекты шириной раскрытия несколько микрометров. Метод может быть использован для контроля объектов с немагнитным покрытием. Существуют различные виды контроля:

«Cухой» и «мокрый» способы нанесения индикатора на контролируемый объект

Флуоресцентный или цветной индикатор для контроля при УФ или дневном свете

Последовательность выполнения технологических операций магнитопорошкового контроля приведена в следующем разделе.

3. Этапы магнитопорошкового контроля

1. Подготовка детали к контролю.

Подготовка детали к контролю заключается в очистке поверхности детали от отслаивающейся ржавчины, грязи, а также от смазочных материалов и масел, если контроль проводится с помощью водной суспензии или сухого порошка. Если поверхность детали темная и черный магнитный порошок на ней плохо виден, то деталь иногда покрывают тонким просвечивающим слоем белой контрастной краски.

2. Намагничивание детали.

Намагничивание детали является одной из основных операций контроля. От правильного выбора способа, направления и вида намагничивания, а также рода тока во многом зависит чувствительность и возможность обнаружения дефектов.

3. Нанесение на поверхность детали магнитного индикатора (порошка или суспензии).

Оптимальный способ нанесения суспензии заключается в окунании детали в бак, в котором суспензия хорошо перемешана, и в медленном удалении из него. Однако этот способ не всегда технологичен. Чаще суспензию наносят с помощью шланга или душа. Напор струи должен быть достаточно слабым, чтобы не смывался магнитный порошок с дефектных мест. При сухом методе контроля эти требования относятся к давлению воздушной струи, с помощью которой магнитный порошок наносят на деталь. Время стекания с детали дисперсной среды, имеющей большую вязкость (например, трансформаторного масла), относительно велико, поэтому производительность труда контролера уменьшается.

4. Осмотр детали. Расшифровка индикаторного рисунка и разбраковка.

Контролер должен осмотреть деталь после стекания с нее основной массы суспензии, когда картина отложений порошка становится неизменной.

Детали проверяют визуально, но в сомнительных случаях и для расшифровки характера дефектов применяют оптические приборы, тип и увеличение которых устанавливают по нормативным документам. Увеличение оптических средств не должно превышать x10.

Разбраковку деталей по результатам контроля должен производить опытный контроллер. На рабочем месте контроллера необходимо иметь фотографии дефектов или их дефектограммы (реплики с отложениями порошка, снятые с дефектных мест, с помощью клейкой ленты или другими способами), а также контрольные образцы с минимальными размерами недопустимых дефектов.

Вид и форма валиков магнитного и люминесцентного магнитного порошка во многих случаях помогают распознать нарушения сплошности.

5. Размагничивание и контроль размагниченности. Удаление с детали остатков магнитного индикатора.

Применяют два основных способа размагничивания. Наиболее эффективный из них - нагрев изделия до температуры точки Кюри, при которой магнитные свойства материала пропадают. Этот способ применяют крайне редко, так как при таком нагреве могут изменяться механические свойства материала детали, что в большинстве случаев недопустимо.

Второй способ заключается в размагничивании детали переменным магнитным полем с амплитудой, равномерно уменьшающейся от некоторого максимального значения до нуля. В зависимости от материала изделия, его размеров и формы применяют переменные магнитные поля различных частот: от долей Гц до 50 Гц.


Заключение

При выполнении данного реферата я дал общую характеристику магнитных методов неразрушающего контроля и более подробную характеристику магнитопорошкового метода.

Данный метод предназначен для выявления поверхностных и подповерхностных дефектов типа нарушения сплошности материала изделия: трещины, волосовины, расслоения, непроварка стыковых сварных соединений, закатов и т.д.

Этим методом можно контролировать изделия любых габаритных размеров и форм, если магнитные свойства материала изделия позволяют намагничивать его до степени, достаточной для создания поля рассеяния дефекта, способного притянуть частицы ферромагнитного порошка. Магнитопорошковый метод применяется практически во всех отраслях промышленности.

В разделе «Этапы магнитопорошкового контроля» приведена последовательность выполнения технологических операций магнитопорошкового контроля:

подготовка детали к контролю - намагничивание детали - нанесение на поверхность детали магнитного индикатора - осмотр детали, расшифровка индикаторного рисунка и разбраковка - размагничивание и контроль размагниченности, удаление с детали остатков магнитного индикатора.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно