это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
Ознакомительный фрагмент работы:
О вычислении коэффициентов и узлов одной квадратурной формулы
Асп. Плиева Л.Ю.
Кафедра математического анализа.
Северо-Осетинский государственный университет
Статья посвящена одному квадратурному процессу, построенному Д.Г. Саникидзе в 1965 г. для вычисления некоторых несобственных интегралов. Вычислены коэффициенты, узлы для конкретных значений .
В приближенных вычислениях особое место занимают квадратурные формулы с наивысшей степенью точности. Их преимущество перед другими обычными квадратурными формулами заключается в том, что в них применяется минимальное количество узлов, коэффициентов и результаты получаются с наименьшей погрешностью. Квадратурные формулы указанного типа были построены еще в XIX в. Гауссом. Поэтому такие квадратурные формулы получили название квадратурных формул Гаусса. В дальнейшем в развитие этой теории значительный вклад внесли А.Крылов и В.Крылов [1].
Здесь же мы рассмотрим квадратурную формулу, которая была построена в 1965 г. грузинским математиком Саникидзе Д.Г. [2]. Он построил ее для вычисления несобственных интегралов вида:
, (1)
где – весовая функция и , а – дифференцируемая до определенного порядка функция.
Итак, квадратурная формула для (1) имеет вид:
,
где ,
, ,
,
.
Здесь являются узлами квадратурной формулы, , – коэффициентами, а – остаточным членом.
В статье Д.Г.Саникидзе [2] приведена таблица узлов и коэффициентов для случая , которые не позволяют вычислить интеграл с более высокой степенью точности из-за отсутствия дальнейших значений узлов и коэффициентов.
Наша задача заключалась в том, чтобы построить указанную квадратурную формулу для конкретных значений .
В [2] вычисляют из следующей системы нелинейных уравнений:
(). (2)
Используя свойства ортогональности многочленов, можно (2) заменить следующей эквивалентной системой:
. (3)
Отсюда для любого мы будем получать формулы Вьета, т. е. наша задача свелась к решению обыкновенного алгебраического уравнения -ой степени:
(4)
где . Для его решения и вычисления коэффициентов была составлена программа на языке Паскаль для значений:
.
Ниже мы приводим полученные результаты для и :
, 1,072244199477261880,
0,505492653760114758, 0,421908758347199805,
0,888813304815261389, 0,153346705375644365,
16,705000673599787900,
0,021010252334716897, 1,018984571918536970,
0,103866983666919520, 0,481159060055772372,
0,239874720072333520, 0,304701660614504889,
0,410803984491100701, 0,210697676646705469,
0,593708243717703457, 0,148242465067985048,
0,764030577337008023, 0,100794530327821750,
0,898906161681775344, 0,061185532509305821,
0,980260135888473404, 0,025642390273945643,
15,297184223170844100;
0,011538570831164812, 0,992093361560775528
0,057797996308034946, 0,475206996405231443,
0,136691350037226988, 0,309481687628868688,
0,242410221548385496, 0,224182021687137567,
0,367149993172128210, 0,170025942566687891,
0,501699747781751390, 0,131105212017457282,
0,636123814574765828, 0,100675698014444633,
0,760495808704081177, 0,075350705067579744,
0,865631994733214915, 0,053206548788294829,
0,943770905120913118, 0,033031548416791457,
0,989161252517134264, 0,014001581712479520,
14,843217392368502800.
Замечание. При проверке достоверности полученных результатов на многочисленных примерах оказалось, что при погрешность округления значительно влияет на точность результатов. Следовательно, желательно использовать полученные результаты при .
Список литературы
1. Крылов В. И. Приближенное вычисление интегралов. М.: Физ. мат. изд., 1959.
2. Саникидзе Д. Г. О приближенном вычислении некоторых несобственных интегралов // Труды Тбилисского мат. университета, 1965. Т.110.
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Теория вероятностей 9 класс , тесты
Решение задач, Теория вероятностей и математическая статистика
Срок сдачи к 23 февр.
Написать индивидуальное сообщение на тему: средние века
Другое, Мировая Отечественная художественная культура
Срок сдачи к 23 февр.
Отчёт полный факторный эксперимент первого порядка пфэ
Другое, Методология, электротехника
Срок сдачи к 23 февр.
Выполнить курс "Начертательная геометрия и инженерная графика 2.2". М-08603
Контрольная, Начертательная геометрия и инженерная графика
Срок сдачи к 21 мар.
Конфигурирование и настройка аппаратно-программных офисных...
Курсовая, МДК, информатика, электротехника
Срок сдачи к 24 февр.
Организация местного самоуправления( на примере своего поселения, муниципального района, городского округа)
Реферат, Муниципальное управление и местное самоуправление
Срок сдачи к 12 мар.
Презентация на 18 слайдов
Презентация, Стратегический менеджмент и управление проектами в государственном управлении
Срок сдачи к 3 апр.
И. В. Витте, Выбрать тему, сделать задание по рекомендациям
Курсовая, Гражданское право
Срок сдачи к 15 мая
Дипломная работа на тему «Методика применения компьютерных обучающих программ на уроках английского языка»
Диплом, Педагогика и Английский язык
Срок сдачи к 13 апр.
Заполните форму и узнайте цену на индивидуальную работу!