Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Математическое моделирование волнового движения воды в узком глубоком непризматическом водохранилище с учетом упругости воды

Тип Реферат
Предмет Математика
Просмотров
885
Размер файла
40 б
Поделиться

Ознакомительный фрагмент работы:

Математическое моделирование волнового движения воды в узком глубоком непризматическом водохранилище с учетом упругости воды

Асп. Музаев Н.И.

Кафедра математики.

Северо-Кавказский горно-металлургический институт (государственный технологический университет

Составлена математическая модель волнового движения воды в узком глубоком непризматическом водохранилище с учетом упругости воды. Модель представляет начально-краевую задачу математической физики для потенциала средней по ширине векторной скорости. В основном дифференциальном уравнении начально-краевой задачи в качестве переменных коэффициентов содержится ширина водохранилища, зависящая от продольной и вертикальной координат. Составленная математическая модель позволяет решить широкий класс прикладных задач, связанных с теорией колебаний и волн в узких глубоких непризматических водохранилищах.

Предположим, что в прямоугольной системе координат xoyz часть пространства, ограниченная условиями 0 £ x £ l, – 1/2 B(x, z) £ y £ 1/2 B(x, z), –H £ z £ 0, представляет узкое глубокое непризматическое водохранилище. Ось oz направлена вертикально вверх, ось ox направлена в продольном, а ось oy – в поперечном направлении водохранилища. L – длина, B(x,z) – ширина, H – глубина водохранилища. Как правило, в горных условиях водохранилища строятся в узких глубоких каньонах ущелий рек. В связи с этим в дальнейшем будем считать, что ширина водохранилища B(x, z) намного меньше, чем ее длина. Кроме этого будем считать, что градиенты в поперечном направлении поля скоростей и гидродинамического давления намного меньше, чем градиенты в продольном и вертикальном направлении водохранилища. Ширина схематизированного водохранилища зависит от продольной и вертикальной координат B = B(x, z), т.е. рассматривается водохранилище с непризматической конфигурацией как в продольном, так и в вертикальном направлении. Для таких водохранилищ решение пространственной задачи волнового движения воды связано с большими математическими трудностями и в мире никем не решена.

В связи с этим трехмерные дифференциальные уравнения гидродинамики интегрально усредняют по площади живого сечения воды, в результате получают одномерные дифференциальные уравнения движения воды в естественных водоемах. В связи с тем, что водохранилища в горных местностях являются глубокими и узкими, то, в отличие от теоретической гидравлики, трехмерные уравнения гидродинамики мы интегрально усредняем только по поперечной координате y, а вертикальную координату оставляем без изменений.

В гидродинамике волнового движения жидкости дифференциальные уравнения используют в «отфильтрованном» виде, т.е. пренебрегают нелинейные члены как малые величины по сравнению с линейными членами. В проекциях на оси x, y и z эта система в «отфильтрованном» виде запишется так [1-3]:

; ; ; (1)

,

где приняты следующие обозначения: Vx , Vy и Vz – скорости в продольном, поперечном и вертикальном направлениях соответственно, зависящие от всех пространственных координат и времени t ; r – плотность; P – гидродинамическое давление; a – скорость звука в воде.

Усредним интегрально систему дифференциальных уравнений (1) по поперечной координате y.

; ;

. (2)

.

Обратимся к известной формуле дифференцирования под знаком интеграла:

. (3)

Интегралы, входящие в выражения (2), преобразуются так:

;

. (4)

В результате такого усреднения система~(2) запишется следующим образом:

; (5)

; (6)

, (7)

где приняты обозначения:

,

,

. (8)

Величины Ux , Uz и P представляют собой средние значения по ширине водохранилища соответственно Ux , Uz и P; q(x,z,t) – интенсивность боковой приточности, определяющаяся выражением:

(9)

Систему (5,6) в векторной форме можно записать так:

, (10)

, (11)

где .

Считая, что движение воды безвихревое, т.е. rot = 0, и вводя потенциал средней по ширине скорости

, (12)

из выражения (10) получаем интеграл Коши в линейном приближении:

. (13)

Компоненты средней скорости через потенциал скорости F(x, z, t) выражаются так:

, . (14)

В связи с тем, что потенциал скорости волнового движения жидкости определяется с точностью до произвольной функции, зависящей только от времени t, произвольную функцию f(t) можно считать тождественно равной нулю. На свободной волновой поверхности должно быть задано гидродинамическое давление . При отсутствии внешнего давления .

Обозначив уравнения волновой поверхности через z = h(x, t), выражение (13) запишется так:

. (15)

Линеаризуя выражение (15), получаем:

. (16)

В линейном приближении очевидно равенство:

. (17)

Дифференцируя выражение (16) по t и подставляя в него (17), получаем:

. (18)

Из выражения (13) при f(t) = 0 для давления получается следующая его зависимость от потенциала скорости:

. (19)

Подставив выражения (14) и (19) в (11), получим следующее дифференциальное уравнение для потенциала скорости:

. (20)

Как известно, в классической теории двумерного волнового движения упругой жидкости, для потенциала скорости имеется следующее уравнение [1,3]:

. (21)

Сравнивая уравнения (20) и (21), легко заметить, что в полученном в данной работе уравнении дополнительно содержатся три слагаемых. Последние две слагаемые в левой части учитывают непризматическое очертание водохранилища как в плане, так и по глубине. Величина q(x, z, t) представляет интенсивность вытеснения воды обвально-оползневым массивом либо интенсивность вторжения селелавинообразного потока в водохранилище.

Отметим, что в статье [4] получено дифференциальное уравнение для потенциала волнового движения несжимаемой жидкости в непризматическом водохранилище. В данной работе теория представляется более общей в связи с тем, что в ней учтена упругость воды, т.е. первое слагаемое уравнения(20).

Список литературы

1. Ламб Г. Гидродинамика. М.: Гостехиздат, 1947.

2. Стокер Дж. Дж. Волны на воде. М.: Изд-во иностранной литературы, 1959.

3. Сретенский Л. Н. Теория волновых движений жидкости. М.: Наука, 1977.

4. Музаев И. Д., Созанов В. Г. К теории поверхностных гравитационных волн Коши – Пуассона в узких глубоких непризматических водоемах// Изв. вузов. Сев.-Кав. регион. Сер. ест. науки. Ростов-на Дону. 1995. № 3.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 096 оценок star star star star star
среднее 4.9 из 5
Мпгу
Быстро, четко, исправлены поправки. Насчет качества работы узнаю после оценки
star star star star star
ГАПОУ МО МонПК
Работа выполнена быстро, и очень хорошо. Очень рекомендую Алину как исполнителя для ваших ...
star star star star star
МИП
Огромное спасибо, Виктория. Все выполнено быстро, качественно, всегда на связи. Уточнения ...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Выполнить контрольную работу по Теоретической механике. М-08023

Контрольная, Теоретическая механика

Срок сдачи к 30 дек.

только что

Практическое задание

Другое, Организация рекламной и PR-деятельности

Срок сдачи к 2 янв.

1 минуту назад

Лабораторная

Лабораторная, технология конструкционных материалов

Срок сдачи к 1 янв.

3 минуты назад

Тестирование по психологии

Тест дистанционно, Психология и педагогика

Срок сдачи к 31 дек.

3 минуты назад

создание ролика

Другое, Право

Срок сдачи к 25 дек.

4 минуты назад

Контрольная, Логика

Контрольная, Логика

Срок сдачи к 27 дек.

4 минуты назад

1. решить файл перечень заданий exel

Решение задач, Информационные технологии

Срок сдачи к 28 дек.

4 минуты назад

Пересечение криволинейных поверхностей плоскостью треугольника АВС

Решение задач, Начертательная геометрия

Срок сдачи к 10 янв.

6 минут назад

Решить задачу

Решение задач, Теоретическая механика

Срок сдачи к 26 дек.

7 минут назад

выполнить задания

Решение задач, Актуальные проблемы права интеллектуального собственности

Срок сдачи к 28 янв.

8 минут назад

Химия

Презентация, Химия

Срок сдачи к 25 дек.

8 минут назад

Нужен визуалмейкер для моих фоток

Другое, Фотография

Срок сдачи к 18 февр.

9 минут назад

Органихзация рекламного агенства

Другое, Организация рекламной и PR-деятельности

Срок сдачи к 2 янв.

10 минут назад

Тема: имидж современного руководителя

Курсовая, менеджмент сфере культуры и искусства

Срок сдачи к 26 дек.

11 минут назад

Практика в уголовном розыске

Отчет по практике, Уголовный процесс

Срок сдачи к 26 дек.

11 минут назад

Нужно решить 30 тестов по экономике

Тест дистанционно, Экономика

Срок сдачи к 5 февр.

11 минут назад

президент рф

Реферат, Основы российской государственности

Срок сдачи к 25 дек.

11 минут назад

Практическая работа по дисциплине «Информационное обеспечение логистических процессов»

Другое, Операционная деятельность в логистике

Срок сдачи к 26 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно