это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
Ознакомительный фрагмент работы:
Азартные игры были главной причиной возникновения и развития теории вероятностей. Эта теория, как и любая другая математическая теория, устанавливает свои законы и теоремы, которые приводят к некоторой путанице. Действительно, кажется странным, что случай может регулироваться законами, потому что если это так, и если мы знаем эти законы, мы можем выиграть в случайной игре — действительно несбыточная мечта. Первое, что нужно прояснить, это то, что случайной является игра, в которой игрок не может иметь никакого влияния на исход игры. Ни шахматы, ни спортивный бридж не являются случайными играми. А вот бросание монеты и рулетка — случайные игры.
Математическое ожидание
В некоторых играх, таких как обычная лотерея или бинго, игрок не принимает никакого участия, выходящего за рамки приобретения билета. Другие, такие как игры казино (рулетка и блэк джек), допускают более активное участие игрока, который может управлять ставками и выбирать тип игры. Вообще говоря, чем меньше участие, чем больше выигрыш. В любом случае, у нас есть четкое ощущение, что в выигрыше всегда оказывается казино. Это потому, что с математической точки зрения, игра не является справедливой. Понятие справедливой игры тесно связано с математическим ожиданием, которое впервые было введено голландским математиком Яном де Виттом (1625–1672) в трактате о пожизненной ренте (1671).
В игре, где известны вероятности событий, которые в ней происходят, математическое ожидание, обозначаемое буквой , представляет собой средний выигрыш за игру. Игра считается справедливой, когда математическое ожидание равно нулю. Посмотрим на примере, как найти математическое ожидание. Предположим, что кто-то предлагает следующую игру: мы бросаем кости, если выпадает , то вы платите € , а если что-то другое, то вы выигрываете € . Первое, что нужно сделать, это вычислить вероятность каждого события. Вероятность того, что выпадет , равна (один благоприятный случай из шести возможных), а вероятность выпадения любого другого числа равна . Математическое ожидание рассчитывается как сумма всех вероятностей, умноженных на соответствующие доходы или убытки, (доход берем со знаком “плюс’’, убыток — со знаком “минус’’). В нашем случае математическое ожидание будет равно
евро.
Это сумма средней прибыли, которую получит наш противник, если мы согласимся на игру. Эта игра будет справедливой, если при выпадении чего-либо, отличного от , мы будем получать евро в случае подвижного, поскольку:
В некоторых случаях интуиция может помочь определить, является ли игра благоприятной, неблагоприятной или несправедливой, но существует много ситуаций, в которых эта интуиция не является полезным инструментом, и становится необходимым использовать карандаш и бумагу. Есть множество примеров, которые показывают, как интуиция может ввести в заблуждение. Например, на собрании, в котором участвуют человека, вероятность встретить человека, день рождения которого в тот же день, что и у вас, несколько выше, чем вероятность выпадения орла при бросании монеты.
Вот еще один пример. Предположим, что два игрока и играют в следующую игру. Игрок случайным образом берет одну карту из колоды в карт. Если у него валет, дама или король, игрок должен заплатить € , если туз, то игрок платит игроку €, и если любая другая карта, то также проигрывает , который должен заплатить игроку €. Кто выиграет? Сначала найдем вероятность каждого исхода. В колоде 36 карт, из которых только валетов, королей и дам, поэтому вероятность вытянуть одну из этих карт:
Так как есть только туза, то вероятность вытянуть один из них
Исключим валетов, дам, королей и тузов, оставшихся карт в колоде, в общей сложности , поэтому вероятность вытянуть карту, отличную от перечисленных:
Теперь мы можем применить формулу для расчета математического ожидания игры.
€.
Это средняя прибыль игрока . Ясно, что игра не является справедливой.
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Требуется разобрать ст. 135 Налогового кодекса по составу напогового...
Решение задач, Налоговое право
Срок сдачи к 5 дек.
Школьный кабинет химии и его роль в химико-образовательном процессе
Курсовая, Методика преподавания химии
Срок сдачи к 26 дек.
Реферат по теме «общественное мнение как объект манипулятивного воздействий. интерпретация общественного мнения по п. бурдьё»
Реферат, Социология
Срок сдачи к 9 дек.
Выполнить курсовую работу. Образовательные стандарты и программы. Е-01220
Курсовая, Английский язык
Срок сдачи к 10 дек.
Изложение темы: экзистенциализм. основные идеи с. кьеркегора.
Реферат, Философия
Срок сдачи к 12 дек.
Заполните форму и узнайте цену на индивидуальную работу!