Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Что есть хаос?

Тип Реферат
Предмет Математика
Просмотров
1775
Размер файла
18 б
Поделиться

Ознакомительный фрагмент работы:

Что есть хаос?

Марк Алескер

Энтропия двоичного числа.

Со времен Клаузиуса энтропия стала научной (объективной) категорией, потому что ее стало возможно измерять. То же самое можно сказать и про информацию, но это произошло значительно позже, и связано с именем Шеннона.

Чаще всего (по Больцману) полагают, что энтропия есть мера хаоса, а информация (по Шеннону) — мера порядка. Но в таком случае не лучше было бы сразу задаться вопросом: что есть хаос, и что есть порядок?, а не изводить так много чернил на обсуждение понятий энтропии и информации — всего лишь мер для хаоса и порядка!

Обычно в термодинамике, возможно, еще до Больцмана, за меру беспорядка некоторой системы принимали (по-видимому, и до сих пор так считается) число способов, которыми можно осуществить внутренние перестройки в системе так, чтобы наблюдатель не заметил изменений макросостояния системы. Поясним это на простейшем примере (как это делается почти во всех учебниках и пр.).

Пусть есть сосуд, разделенный на две части проницаемой стенкой. В сосуде могут свободно перемещаться из одной половины в другую две частицы, обладающие одинаковой энергией (например, молекулы газа). Макросостоянием называют такую ситуацию, когда измеряются одни и те же параметры объекта, например давление частиц на стенки в каждой половине сосуда. Это давление в нашем случае зависит только от количества частиц. Тогда может существовать три разных макросостояния:

обе частицы находятся в правой половине сосуда,

обе частицы в левой половине,

одна частица в правой половине, другая — в левой.

Каждое из первых двух макросостояний может реализоваться лишь одним способом. А третье макросостояние двумя: или первая частица находится в правой половине сосуда, а вторая в левой, или наоборот.

То есть вероятность третьего макросостояния вдвое выше, чем первого или второго. Каждый отдельный способ, представляющий данное макросостояние, называют микросостоянием. А количество всех микросостояний для некоторого макросостояния называют статистическим весом данного макросостояния.

Ясно, что на опыте мы будем обнаруживать преимущественно наиболее вероятные макросостояния, то есть такие, статистический вес которых выше. При этом считается, что чем выше статистический вес наблюдаемого макросостояния, тем хаос в системе больше.

Казалось бы, все прекрасно. Однако можно показать, что, пользуясь вышеприведенными правилами, мы не всегда будем наблюдать наибольший хаос тогда, когда максимален статистический вес макросостояния. И если это действительно так, то нам придется искать иной критерий хаоса.

Начнем с того, что более наглядно представлять себе все ситуации, связанные с состоянием объектов, можно, если использовать отображение элементов некоторого объекта на поле чисел. Использовать числа и цифры всегда удобней, так как для различных подсчетов может быть привлечена математика.

Действительно, любой объект, состоящий из n элементов, каждый из которых может находиться в одном из m состояний, может быть приведен во взаимно однозначное соответствие с n–разрядным числом в m–ичной системе счисления, если некоторому элементу объекта поставить в соответствие определенный разряд числа, а некоторому состоянию — определенную цифру. Тогда конкретному состоянию объекта будет соответствовать некоторое число, и мы можем анализировать просто числа. Для упрощения вычислений в дальнейшем будем полагать число состояний равным m=2, то есть рассматриваемые нами объекты можно будет отображать на двоичные числа.

Итак, пусть имеется двоичное n–разрядное число. Цифры "0" и "1" этого числа могут быть расположены в разрядах в определенном порядке или беспорядочно. Как оценить степень беспорядоченности расположения цифр в числе?

Рассмотрим пример. Пусть имеется объект, элементы которого можно отобразить на двоичные четырехразрядные числа. Пусть макросостояние А определяется следующим образом: "два разряда находятся в состоянии 1, два других разряда — в состоянии 0". Пусть макросостояние В определяется так: "один разряд находится в состоянии 1, три других разряда — в состоянии 0".

Если теперь согласно нашим предыдущим представлениям вычислить статистический вес макросостояния А, то будет видно, что оно обладает большим весом, чем макросостояние В, так как для А имеется шесть комбинаций: 0011, 0101, 0110, 1001, 1010 и 1100, а для макросостояния В всего четыре: 0001, 0010, 01000 и 1000.

Обратим внимание на то, что в любом микросостоянии макросостояния А согласно традиционному критерию хаоса можно считать цифры 1 и 0 расположенными наиболее беспорядочно по сравнению с любым иным двоичным четырехразрядным числом, потому что веса для макросостояний, представленных другими числами, меньше шести.

Вес макросостояний, определяемых двоичными n-разрядными числами, равен числу сочетаний из n элементов по количеству нулей (или единиц), имеющемуся в этом числе. Веса для макросостояний, определяемых произвольными числами (n частиц и m состояний), можно подсчитывать по одной общей формуле, которая довольно громоздка, и поэтому здесь нет места ее приводить.

В этом примере трудно обнаружить нечто, противоречащее нашим наглядным представлениям о хаосе и порядке. Действительно, мы подсчитали какие-то числа (веса), и они нам говорят, что цифры в числе 0011 расположены более хаотично, чем в числе 0001. Возможно… Но возьмем число с большим количеством разрядов. Неужели и в нем расположение "подряд", скажем, пятисот единиц и пятисот нулей представляет собой больший беспорядок, чем некоторая комбинация нулей и единиц, расположенных в "настоящем" беспорядке? (Напомним, что комбинация с одинаковым количеством нулей и единиц обладает самым большим статистическим весом, если не принимать в расчет макросостояний более высоких уровней).

Ответ на последний вопрос, несомненно, будет отрицательным, если нам удастся сформулировать приемлемый критерий хаоса.

Итак, приступим.

При поиске этого критерия будем руководствоваться следующим правилом: хаоса больше всего там, где больше всего информации. (Не зря же энтропия и информация вычисляются по одинаковым формулам!).

Действительно, из некоторой таблицы двоичных чисел, состоящей, например, из нулей и единиц, можно извлечь информации больше, чем из таблицы того же объема, но содержащей в себе только нули. А ведь наличие только нулей — это порядок, а "разбросанные" по таблице нули и единицы — хаос. И классическое определение понятия "информация" говорит о том же: информация — это устраненная неопределенность ожидания того или иного символа (кода, сообщения и т.п.). Ее мерой служит энтропия источника. Чем больше энтропия источника (хаос), тем больше информации можно получить от него. Если, например, ожидание появления некоторой кодовой последовательности достоверно, то количество полученной информации равно нулю. Подобный пример отсутствия передачи информации от источника, когда последний вычисляет значения очередного разряда числа “пи”, приведен в работе К. Шеннона "Математическая теория связи". (В кн.: Работы по теории информации и кибернетике. М., 1963, с.273).

Кроме отмеченного эвристического правила примем во внимание следующее соображение.

Все микросостояния, определяющие некоторое макросостояние неотличимы друг от друга только в границах определения макросостояния. Однако это не значит, что они абсолютно тождественны по всем показателям. Для доказательства этого утверждения достаточно обратить внимание на то, что приведенные выше шесть двоичных чисел для макросостояния А мы отличаем друг от друга без труда, а ведь они являются образами микросостояний, определяющих одно и то же макросостояние. Эти отличия, несомненно, играют существенную роль при оценке степени хаоса (или порядка) в расположении элементов объекта.

Теперь можно сформулировать критерий, определяющий наибольший хаос в некотором объекте.

Расположение элементов некоторого объекта достигает наибольшего хаоса тогда, когда из объекта можно мысленно вычленить максимально возможное количество его частей, каждое из которых отличается от любой другой вычленяемой части.

Или по-другому: максимальный хаос в расположении элементов объекта достигается тогда, когда для полного описания объекта требуется наибольшее количество информации.

Покажем далее, что применение этого критерия дает лучшие результаты, чем традиционные "термодинамические" правила. (Например, расположение нулей и единиц в двоичном тысячеразрядном числе по 500 штук "подряд" не будет теперь считаться максимально хаотичным, как это было ранее). Для этого рассмотрим, например, десятиразрядное двоичное число. Согласно старому критерию хаоса имеется 252 числа, в которых цифры расположены наиболее хаотично: 0000011111, 0000111110, 0101010101 и т.д. Однако если воспользоваться новым критерием и вычленить из некоторой комбинации все ее различающиеся составные части, то окажется, что из указанных 252 комбинаций только следующие 16:

00010111000001110100001011100000111010000100011101010111000101110001010111010001
10001011101000111010101000111010111000101100010111110100011111100010111110100011

обладают максимальным статистическим весом (равным 42). Среди этих чисел нет ни одного, в котором нули или единицы шли бы "подряд"!

Будем говорить, что такие комбинации нулей и единиц, которые могут "породить" максимальное количество чисел, обладают максимальной энтропией (хаосом) и могут содержать в себе максимальное количество информации. Эта информация не может быть "сжата" никакими способами. (В отличие, например, от комбинаций, содержащих много идущих подряд нулей или единиц. В последнем случае можно было бы просто сообщить словами, сколько таких цифр идет "подряд", и сообщаемая таким путем информация могла бы иметь меньший объем, чем изображение самого числа).

Величину максимальной энтропии Е “n”-разрядного двоичного числа можно определить по формуле:

Е = (1/2)[(n - m)2 + n – m] +2m+1-2,

где m целое и m = k max в неравенстве 2k < n. (k целое)

Итак, что же после всех наших рассуждений мы обнаруживаем в "сухом остатке"?

Пожалуй, кроме формулировки критерия хаоса, можно отметить еще неудовлетворенность в связи с употреблением термина "информация" без того, чтобы иметь ясное представление об этом понятии. А ведь использование этого понятия не по назначению могло привести нас к ложным выводам. Например, почему мы думаем, что "из некоторой таблицы двоичных чисел, состоящей, например, из нулей и единиц, можно извлечь информации больше, чем из таблицы того же объема, но содержащей в себе только нули"?

Пусть, например, числа принимаются от некоторого источника информации и затем последовательно записываются в две одинаковые таблицы. Пусть в одной таблице оказываются записанными только "нули", а во второй — как "единицы", так и "нули". Известно, что количество принятой информации зависит только от вероятности приема того или иного числа, а не от того, какие числа были приняты на самом деле. И если эти вероятности были одинаковы, то и количество информации в обеих таблицах равно друг другу. Так что наши предыдущие высказывания, будто бы в таблице, состоящей из хаотического набора "нулей" и "единиц" больше информации, чем в таблице, состоящей только из "нулей", вызывают определенные сомнения.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159734
рейтинг
icon
3268
работ сдано
icon
1401
отзывов
avatar
Математика
Физика
История
icon
156023
рейтинг
icon
6059
работ сдано
icon
2736
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
61 764 оценки star star star star star
среднее 4.9 из 5
СамГУ (2023)
Очень хорошо проделанная работа! Доволен качеством и быстротой выполнения.
star star star star star
ОГИС
Обращалась к Екатерине и не раз! И думаю,что придеться обращаться еще!)) Все сделано быстр...
star star star star star
РАНХиГС
Выражаю огромную благодарность за досрочное выполнение работы и исправление всех замечаний...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

1 минуту назад

Практические задание учебной практики

Отчет по практике, управление проектами

Срок сдачи к 10 июля

3 минуты назад

Психология

Тест дистанционно, Психология безопасности

Срок сдачи к 13 июля

5 минут назад

Отчёт по практики и код на языке pascal abc

Другое, Отчёт по практики и код

Срок сдачи к 10 июля

6 минут назад

Тест онлайн

Тест дистанционно, Архитектура

Срок сдачи к 9 июля

7 минут назад
7 минут назад

Тест онлайн

Тест дистанционно, Русский язык

Срок сдачи к 9 июля

9 минут назад

Необходимо выполнить производственную практику.

Отчет по практике, Менеджмент

Срок сдачи к 21 июля

11 минут назад

Доделать отчет по пратике

Отчет по практике, Проектирование информационных систем

Срок сдачи к 10 июля

11 минут назад

мне нужно сделать отчет по практике

Отчет по практике, Начальная профессиональная подготовка и введение в специальность

Срок сдачи к 10 июля

11 минут назад

практика

Отчет по практике, бух.учёт

Срок сдачи к 9 июля

11 минут назад

аолвалол лотлдатп ьап

Реферат, Психология

Срок сдачи к 16 июля

11 минут назад

Написать дипломную работу + презентация

Диплом, Интернет-маркетинг

Срок сдачи к 10 сент.

11 минут назад

Курсовая работа

Курсовая, Теория государства и права

Срок сдачи к 10 июля

11 минут назад

Сделать аннотации 4 статей, 1.5-2 листа по алгоритму

Статья, Психолого-педагогическое образование Социально-педагогическое сопровождение семьи и ребенка

Срок сдачи к 10 июля

11 минут назад

Итоговая аттестационная работа, Педагогика и психология

Диплом, Педагогика и психология

Срок сдачи к 29 июля

11 минут назад

Написать статью

Статья, Юриспруденция

Срок сдачи к 13 июля

11 минут назад

Надо сделать реферат на тему Плюсы и минусы «Современные системы...

Реферат, Радиоэлектроника

Срок сдачи к 10 июля

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно