Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Числові характеристики системи випадкових величин та їх граничні теореми

Тип Реферат
Предмет Математика
Просмотров
994
Размер файла
92 б
Поделиться

Ознакомительный фрагмент работы:

Числові характеристики системи випадкових величин та їх граничні теореми

Числові характеристики системи випадкових величин та їх граничні теореми

1. Кореляційний момент, коефіцієнт кореляції

Кореляційним моментом (коваріацією) випадкових величин і називається математичне сподівання добутку відповідних ним центрованих величин:

. (1)

Властивості коваріації:

1.
2.
3.

Перші дві з них очевидні, остання доводиться також легко:

Коефіцієнтом кореляції називається кореляційний момент нормованої випадкової величини:

Теорема. Для будь-яких випадкових величин , коефіцієнт кореляції причому знак рівності можливий тоді і тільки тоді, коли і з імовірністю 1 пов'язані лінійно.

Доведення. Обчислимо дисперсію лінійної комбінації випадкових величин і з довільним коефіцієнтом та врахуємо, що з властивостей дисперсії вона є невід'ємною.

При цьому отримаємо невід’ємну квадратичну форму відносно змінної з невід’ємним коефіцієнтом при .

Це можливо лише за умови, що її дискримінант . З урахуванням визначення (1) цю нерівність можна переписати у вигляді:

або

або мовою середніх квадратичних відхилень випадкових величин

.

Тобто

Доведемо тепер другу частину теореми: тоді і тільки тоді, коли і з імовірністю 1 пов'язані лінійно.

Необхідність:

Достатність:

, , ,

, .

Випадкові величини x,h називаються некорельованими, якщо їх коваріація дорівнює нулю. Якщо випадкові величини x, h незалежні, то вони некорельовані.

.

Зворотне твердження, взагалі кажучи, не має місця.

Наприклад,

.

.


Для опису зв'язків, що існують між проекціями випадкового вектора (x,h), крім коваріації можна використовувати числові характеристики умовних законів розподілу , .

Умовним середнім значенням і умовною дисперсією випадкової величини x за умови h =y називаються величини:

,

.

Аналогічно визначаються характеристики і .

Для опису випадкового вектора також вводять початкові і центральні моменти:

, .

2. Комплексна випадкова величина, характеристичні функції

Комплексна випадкова величина, що вводиться за формулою , є іншим способом опису випадкового вектора (,).

Випадкові величини і називаються незалежними, якщо незалежними є випадкові вектори (,) і (,).

,

,

,

,

,

,

,

,

.

Характеристичною функцією випадкової величини називається середнє значення виразу .

.

Функцію називають також характеристичною функцією відповідного закону розподілу:

(2)

Як видно з (2), характеристична функція є перетворенням Фур'є відповідної їй щільності імовірності:


Властивість 1. При додаванні незалежних випадкових величин їхні характеристичні функції перемножуються.

Властивість 2. Розкладання характеристичної функції в ряд за ступенями дозволяє знайти всі моменти , , ,…випадкової величини .

3. Види збіжності випадкових величин

Послідовність випадкових величин x1, x2…називається такою, що збігається з випадковою величиною x в розумінні середнього квадратичного, якщо границя математичного сподівання квадрата абсолютного значення відхилення від прямує до нуля за умови, що , тобто

.

Величина x називається ще СК границею послідовності {xn}.

чи .


Оскільки

,

СК збіжність рівносильна виконанню умов:

.

Послідовність випадкових величин збігається з випадковою величиною при за імовірністю, якщо для кожного будь-якого e>0

,

.

Збіжність послідовності до випадкової величини за ймовірністю символічно позначається таким чином:

.

Для будь-якої випадкової величини при будь-якому e>0

.

.

Наслідок.

Зі збіжності у СК випливає збіжність за ймовірністю.

4. Граничні теореми теорії ймовірностей

Нерівність Чебишева.

.

(3)

Як випливає з нерівностей (3) зі зменшенням дисперсії , основна частина площі під кривої fx(x) виявляється зосередженою в околі точки .

Рисунок 1


Внаслідок своєї загальності нерівність Чебишева дає дуже грубу оцінку ймовірності, що входить до неї.

Наприклад, .

, якщо .

Вважають, щопослідовність функцій розподілу , , ,...., ,... збігається до функції розподілу , якщо

в усіх точках неперервності.

Якщо , то .

Практичне використання теорії ймовірностей засновано на такому принципі: випадкову подію, ймовірність якої досить близька до 1, можна вважати достовірною та неможливою при дуже малій ймовірності.

Теореми, що забезпечують виконання такої схеми обробки даних, називаються законами великих чисел.

Теорема Чебишева

Нехай h1, h2…–послідовність попарно незалежних випадкових величин, дисперсії яких обмежені

, k=1,2 …

Тоді при будь-якому e>0


.

Теорема Бернуллі.

Нехай xn – число появ деякої події А в серії з n незалежних іспитів, р – ймовірність появи А в окремому іспиті.

Тоді

тобто для кожного e>0

Застосовуючи теорему Чебишева, одержимо формулу, що очікуємо при необмеженій кількості випробувань.

®р.


Збіг теоретичних розрахунків із закономірностями, що фактично спостерігаються, свідчить про правильну схему побудови теорії ймовірностей. збіжність випадковий величина ймовірність

Центральна гранична теорема.

Нехай x1,x2,…послідовність незалежних випадкових величин, що мають дисперсію D1,D2,…Dn…Треті абсолютні центральні моменти їх обмежені mk=M|xk-Mxk|3£C.

Тоді випадкова величина

розподілена асимптотично нормально із середнім і , тобто

Р(a<Sn<b)®Ф(b)-Ф(a)

при n®¥.

Теорема Муавра-Лапласса (окремий випадок).

Нехай xn – число появ деякої події А у серії з n незалежних випробувань, р – ймовірність появи події А в окремому випробуванні. Тоді

Теорема дозволяє при досить великих n одержати ймовірність:


Приклад 1. Обчислити ймовірність Р(715<xn<725) того, що кількість появ герба в 1500 киданнях буде в межах від 715 до 725.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно