Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Интеграл дифференциального уравнения

Тип Реферат
Предмет Математика
Просмотров
1113
Размер файла
66 б
Поделиться

Ознакомительный фрагмент работы:

Интеграл дифференциального уравнения

АНО ВПО «НАЦИОНАЛЬНЫЙ ИНСТИТУТ ИМЕНИ ЕКАТЕРИНЫ ВЕЛИКОЙ»

Контрольное задание

По дисциплине: «Математика»

Москва 2010 г.


Контрольное задание:

Упражнения

1. Дана последовательность аn=(3n-5)/(4n+1). Установить номер n0, начиная с которого выполняется неравенство │аn-А │ < 1/500.

Отв. n0=719.

Найти:

2. lim (3-√х)/(х2-81).Отв. –1/108.

х→9

3. lim (5х2-8)/(х3-3х2+11).Отв. 0.

х→∞

Проверить непрерывность следующих функций:

4. у=5х/(х3+8).Отв. При всех х≠–2 функция непрерывна.

5. у=(х2+4)/ √(х2-36). Отв. Функция непрерывна при всех значениях

│х│>6.

6. Определить точки разрыва функции у=(8х+2)/(16х2-1).

Отв. Точки х1=–1/4 и х2=1/4.

Задача 1

Найти общий интеграл дифференциального уравнения:

Решение


Выполним разделение переменных, для этого разделим обе части уравнения на :

Проинтегрируем обе части уравнения и выполним преобразования:

Ответ

Задача 2

Проинтегрировать однородное дифференциальное уравнение:


Решение

Решение однородных дифференциальных уравнений осуществляется при помощи подстановки:

,

С учетом этого, исходное уравнение примет вид:

Выполним разделение переменных, для этого умножим обе части уравнения на , получим,

Проинтегрируем обе части уравнения и выполним преобразования:

Возвращаясь к переменной y, получим общий интеграл исходного уравнения:


Ответ

Задача 3

Найти общий интеграл дифференциального уравнения:

Решение

Покажем, что данное уравнение является однородным, т.е. может быть представлено в виде, . Преобразуем правую часть уравнения:

Следовательно, данное уравнение является однородным и для его решения будем использовать подстановку,

С учетом этого, уравнение примет вид:


Выполним разделение переменных, для этого умножим обе части уравнения на ,

Проинтегрируем обе части уравнения,

Возвращаясь к переменной y, получим,

Ответ

Задача 4

Решить линейное дифференциальное уравнение:

Решение

Составим характеристическое уравнение и найдем его корни:

Так как корни характеристического уравнения действительные и различны, то решение дифференциального уравнения будет иметь вид:

Ответ

Задача 5

Найти общее решение дифференциального уравнения:

Решение

Общее решение неоднородного уравнения будем искать в виде:

,

где – частное решение исходного неоднородного ДУ, – общее решение соответствующего однородного уравнения:

Составим характеристическое уравнение и найдем его корни:

Так как корни характеристического уравнения действительные и совпадают, то общее решение однородного ДУ будет иметь вид:


Учитывая, что правая часть имеет специальный вид, то частное решение неоднородного уравнения будем искать в виде,

,

где A, B, C – неопределенные коэффициенты. Найдем первую и вторую производные по x от и подставим полученные результаты в исходное уравнение:

Приравняем коэффициенты при соответствующих степенях x и определим их:

Следовательно, частное решение неоднородного ДУ примет вид:

Окончательно, общее решение исходного ДУ:

Ответ


Задача 6

Решить уравнение:

Решение

Общее решение неоднородного уравнения будем искать в виде:

,

где – частное решение исходного неоднородного ДУ, – общее решение соответствующего однородного уравнения:

Составим характеристическое уравнение и найдем его корни:

Так как корни характеристического уравнения действительные и различны, то общее решение однородного ДУ будет иметь вид:

Учитывая, что правая часть имеет специальный вид, то частное решение неоднородного уравнения будем искать в виде,

,

где A, B, C – неопределенные коэффициенты. Найдем первую и вторую производные по x от и подставим полученные результаты в исходное уравнение:


Приравняем коэффициенты при соответствующих степенях x и определим их:

Следовательно, частное решение неоднородного ДУ примет вид:

Окончательно, общее решение исходного ДУ:

Ответ

Комментарии к решению

В задаче №1, опечатка в предполагаемом ответе, упущен показатель степени при x.

В задаче №3, ответ следует оставить в виде, содержащем модуль , т.к. нет достаточных оснований его снять.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно