это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
Ознакомительный фрагмент работы:
Лабораторная работа №4
Транспортные модели
Цель работы: научиться находить оптимальное решение задач транспортного типа.
Задание
Вариант 1. На четырех ткацких станках с объемом рабочего времени 200, 300, 250 и 400 станко-ч за 1 час можно изготовить соответственно 260, 200, 340 и 500 м ткани трех артикулов I, II, III. Составить оптимальную программу загрузки станков, если прибыль (в ден. ед.) от реализации 1 м ткани i-го артикула при ее изготовлении на j-м станке характеризуется элементами матрицы
,
а суммарная потребность в ткани каждого из артикулов равна 200, 100 и 150 тыс. м, учитывая, что ткань Iартикула не может производиться на третьем станке.
Табличная модель:
Контрольные вопросы:
1. Как записывается математическая модель задачи транспортного типа?
Обозначим через xijобъем перевозок от i-го поставщика j-ому потребителю. Математическая модель задачи имеет вид:
1) объем поставок i-го поставщика должен равняться количеству имеющегося у него груза
;
2) объем поставок j-ому потребителю должен быть равен его спросу
;
3) объемы поставок должны выражаться неотрицательными числами
xij³0; , ;
4) общая сумма затрат на перевозку груза должна быть минимальной
.
Если суммарный объем отправляемых грузов равен суммарному объему потребностей в этих грузах по пунктам назначения
,
то такая транспортная задача называется закрытой (сбалансированной), в противном случае — открытой (несбалансированной).
Если указанные затраты неизвестны (не указаны) соответствующие значения сijполагают равными нулю.
модель поставка потребность затрата
2. Как свести открытую транспортную задачу к закрытой?
Если имеет место открытая транспортная задача, ее необходимо свести к закрытой:
1) в случае перепроизводства – ввести фиктивного потребителя с необходимым объемом потребления (элементы матрицы сij, связывающие фиктивные пункты с реальными, имеют значения, равные затратам на хранение невывезенных грузов);
2) в случае дефицита – ввести фиктивного поставщика с недостающим объемом отправляемых грузов (элементы матрицы сij, связывающие фиктивные пункты с реальными, имеют значения, равные штрафам за недопоставку продукции).
3. Каковы основные ситуации, описывающие дополнительные ограничения транспортной задачи?
При решении практических задач зачастую приходится учитывать ряд дополнительных ограничений.
1. Отдельные поставки от определенных поставщиков некоторым потребителям должны быть исключены (из-за отсутствия необходимых условий хранения, чрезмерной перегрузки коммуникаций и т.д.). Это достигается искусственным значительным завышением затрат на перевозки сijв клетках, перевозки через которые следует запретить.
2. На предприятии необходимо определить минимальные суммарные затраты на производство и транспортировку продукции. С подобной задачей сталкиваются при решении вопросов, связанных с оптимальным размещением производственных объектов. Здесь может оказаться экономически более выгодным доставлять сырье из более отдаленных пунктов, но зато при меньшей его себестоимости. В таких задачах за критерий оптимальности принимают сумму затрат на производство и транспортировку продукции.
3. Ряд транспортных маршрутов, по которым необходимо доставить грузы, имеют ограничения по пропускной способности. Если, например, по маршруту AiBjможно провести не более qединиц груза, то Bj-й столбец матрицы разбивается на два столбца – и . В первом столбце спрос принимается равным , во втором – . Несмотря на то, что фактические затраты сijв обоих столбцах одинаковы и равны исходным, в столбце вместо истинного тарифа сijставится искусственно завышенный тариф М (клетка блокируется). Затем задача решается обычным способом.
4. Поставки по определенным маршрутам обязательны и должны войти в оптимальный план независимо от того, выгодно это или нет. В этом случае уменьшают запас груза у поставщиков и спрос потребителей и решают задачу относительно тех поставок, которые необязательны. Полученное решение корректируют с учетом обязательных поставок.
5. Необходимо максимизировать целевую функцию задачи транспортного типа (например, задача об оптимальном распределении оборудования). В этом случае необходимо изменить знак в тарифах на противоположный. В ответе отрицательный знак игнорируется.
Вывод: я научилась находить оптимальное решение задач транспортного типа.
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Выполнить курсовой по Транспортной логистике. С-07082
Курсовая, Транспортная логистика
Срок сдачи к 14 дек.
Роль волонтеров в мероприятиях туристской направленности
Курсовая, Координация работы служб туризма и гостеприимства
Срок сдачи к 13 дек.
Контрольная работа
Контрольная, Технологическое оборудование автоматизированного производства, теория автоматического управления
Срок сдачи к 30 дек.
Написать курсовую по теме: Нематериальные активы и их роль в деятельности предприятия.
Курсовая, Экономика организации
Срок сдачи к 14 дек.
написать доклад на тему: Процесс планирования персонала проекта.
Доклад, Управение проектами
Срок сдачи к 13 дек.
Заполните форму и узнайте цену на индивидуальную работу!