Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Построение 3D-моделей нециклических молекул в естественных переменных

Тип Реферат
Предмет Информатика и программирование
Просмотров
1626
Размер файла
30 б
Поделиться

Ознакомительный фрагмент работы:

Построение 3D-моделей нециклических молекул в естественных переменных

Е.Г. Атавин, В.О. Тихоненко, Омский государственный университет, кафедра органической химии

1. Введение

По мере накопления химической информации роль данных о пространственном геометрическом строении молекул возрастает. Устанавливать его можно как экспериментальными, так и теоретическими методами, а описывать принято либо в декартовой системе координат, либо в естественных (внутренних, молекулярных) переменных.

Первый способ предполагает знание 3N декартовых координат N атомов, позволяет легко строить графическое изображение молекулы, вычислять значения всех естественных переменных и используется в большинстве современных программ квантовой механики, молекулярной механики и колебательной спектроскопии. Однако произвол в выборе положения начала координат и ориентации координатных осей затрудняет сравнение результатов, полученных разными авторами. Кроме того, наличие у молекулы трех поступательных и трех вращательных степеней свободы приводит к появлению шести нулевых собственных значений у матрицы вторых производных энергии по координатам и к дополнительным осложнениям вычислительного характера [1]. Наконец, само задание декартовых координат атомов - нетривиальная задача, поскольку они не являются справочными данными.

Описание (и анализ) геометрического строения в естественных переменных (ниже - межъядерные расстояния R, валентные углы , ,  и углы внутреннего вращения , F) проще, поскольку задание их не представляет проблемы и менее зависит от произвола исследователя, благодаря имеющимся эмпирическим закономерностям [2]. При оптимизации геометрии молекулы можно упрощать задачу, фиксируя значения хорошо известных параметров. Легко организовать поиск глобального минимума энергии путем перебора допустимых значений всех или некоторых параметров. При работе же с декартовыми координатами реализация этих возможностей сопряжена со значительными трудностями.

Однако непосредственно по значениям естественных переменных невозможно в общем случае построить графическое изображение молекулы. Также затруднительно выполнять любые вычислительные операции с моделью молекулы, например, определять вандерваальсовые расстояния между атомами.

Таким образом, оба способа описания молекулярной геометрии обладают рядом практически важных достоинств и весьма существенных недостатков. Совмещение достоинств достигается вычислением декартовых координат атомов по заданным естественным переменным, что представляет собой в общем случае весьма громоздкую стереометрическую задачу.

Цель настояшей работы и состоит в рассмотрении алгоритмов вычисления декартовых координат атомов по заданным естественным переменным то есть построения 3D-моделей молекул.

2. Метод Эйринга [3]

Обычно систему координат связывают с положением первых трех атомов (рис. а), координаты которых, таким образом, определяются по формулам:

x1 = R12 cos,x2 = 0,x3 = R23
y1 = R12 sin,y2 = 0,y3 = 0(1)
z1 = 0,z2 = 0,z3 = 0

Легко также вычислить координаты четвертого атома:

x4=x3-R34cos
y4=R34sincos(2)
z4=R34sinsin

Рис. 1. Ориентация молекулы в системе координат

Далее, построенный фрагмент с помощью переноса и двух поворотов переводится в положение, показанное на рис. 1б.

xi = xi-x3, yi = yi - y3 , zi = zi - z3
yi = yi cos+ zi sin
zi = zi cos- yi sin
xi = xi cos- yi sin
yi = yi cos+ xi sin

(i - номера всех ранее построенных атомов), что дает возможность вычислить координаты следующего атома по формулам (2) и т.д. Общее число умножений и делений при построении модели N-атомной молекулы растет квадратично и составляет 6+4N·(N-4) операций.

3. Алгоритм построения моделей больших молекул

В предлагаемом алгоритме отсутствуют многократные переносы и вращения ранее построенных фрагментов, новые атомы встраиваются в растущую цепь непосредственно, без ее предварительной переориентации,что, помимо увеличения быстродействия, более благоприятно с точки зрения устойчивости вычислительной схемы к накоплению ошибок округления.

Координаты первых четырех атомов вычисляются по формулам (1, 2).

Выбираются три атома A, B, C с найденными координатами (Xi,Yi ,Zi ), где i = a, b, c .

Переносим систему координат в точку опорного атома B:

Xi = Xi -Xb, Yi = Yi -Yb, Zi = Zi -Zb

Вычисляем координаты атомов A, B, C и пристраиваемого атома D во вспомогательной системе координат по формулам (1, 2).

Полученные координаты связаны ортогональным преобразованием A

X = a11 x + a12 y + a13 z,
Y = a21 x + a22 y + a23 z,
Z = a31 x + a32 y + a33 z,

элементы которого для случая собственного вращения (Det(A) = 1) удается выразить следующим образом:

a11 = Xc/xc, a12 = (Xa-a11xa )/ya ,
a21 = Yc/xc, a22 = (Ya-a21xa )/ya ,
a31 = Zc/xc, a32 = (Za-a31xa )/ya ,
a13 = a21a32-a31a22
a23 = a31a12 -a11a32,
a33 = a11a22-a21a12

(случай хc = Rbc = 0 в молекулах не встречается; случай уa = Rab sin = 0 возникает в производных ацетилена и легко исключается выбором в качестве атомов A, B и C другого, нелинейного фрагмента).

Лишь три из девяти матричных элементов aij независимы. Справедливость связывающих их условий, накладываемых ортогональностью линейного преобразования А, может быть проверена непосредственно.

Координаты атома D (xd , yd , zd ) преобразуются в исходную систему координат:



Xd

Yd

Zd



= A ·

xd

yd

zd



+

Xb

Yb

Zb

и процесс повторяется с пункта 2 до полного построения модели. Общее число умножений и делений растет линейно и может быть уменьшено до 6+27·(N-4) операций.

Отношение числа операций в алгоритме Эйринга и в предлагаемой схеме близко к N/7, превышает единицу уже для семиатомных цепей, а для молекул большого размера оказывается весьма значительным.

Отметим, что матрица A является общей для различных атомов D, что, в частности, значительно ускоряет вычисление координат атомов водорода.

4. Метод Нордландера

Вместо линейного преобразования А переход от вспомогательной системы координат к системе, связанной с молекулой, можно осуществить с помощью трех последовательных вращений вокруг координатных осей. Однако соответствующие формулы [4] выглядят существенно более громоздко, требуют постоянного выбора оптимального решения из разных вариантов последовательностей вращений и требуют не менее 6+55·(N-4) операций умножения и деления и 3·(N-4) операций извлечения корня.

5. Метод Эдди

Весьма эффективным является алгоритм [5], использующий тот факт, что координаты атома D легко выражаются через направляющие косинусы связи CD. Последние связываются с направляющими косинусами двух предыдущих связей и структурными параметрами.Число умножений и делений составляет 8+36·(N-4) операций. Приходится хранить дополнительно 3·(N-2) значений косинусов.

6. Разветвленные цепи

Методика построения боковых цепей не отличается от построения главной цепи, необходимо лишь соответствующим образом задавать последовательности опорныx атомов A, B, C и молекулярных параметров. Известно, однако,

Рис. 2. Построение боковых цепей

что точность задания торсионных углов по справочным данным на порядок ниже, чем валентных, и значительно более точное описание взаимного расположения связей 3-4 и 3-5 узлового атома 3 (рис. 2) достигается заданием не двух торсионных углов 1234 и F1235, а одного торсионного 1234 и одного валентного 435 (помимо обязательных для обоих вариантов валентных углов 234 и 235) [6]. Вычислить требуемый торсионный угол F можно из соотношений:

cosF = cosC + sinS ,
sinF = sinC - cosS, где
С = (cos- coscos)/(sinsin),
S = 

_____

1 - C2

.

Выбор знака + или - определяется желаемой (L или D) конфигурацией узлового атома.

В особом случае разветвления у второго атома (например в изобутане) для определения угла F удобно ввести в качестве опорного атома А вспомогательный атом с координатами

Xа = X1+X2-X3,
Yа = Y1+Y2-Y3,
Zа = Z1+Z2-Z3.

Тогда  = 180, cosF = - С, sinF = S.

Списоклитературы

Hilderbrandt R.L. Application of Newton-Raphson optimization techniques in molecular mechanics calculations// Computers & Chemistry 1977 V. 1. P. 179-186.

Mastryukov V.S., Simonsen S. H. Empirical correlations in structural chemistry // Molecular Structure Research. 1996. V. 2. P. 163-189.

Дашевский В.Г. Конформационный анализ органических молекул М.: Химия, 1982 .

Nordlander J.E., Bond A.F., Bader M. Atcoor: a program for calculation and utilization of molecular atomic coordinates from bond parameters// Computers & Chemistry. 1985. V. 3. P. 209-235.

Eddy C. R., Computation of the Spatial Locations of Atoms of a Chain Molecule Undergoing Intramolecular Rotations// J. Chem. Phys. 1963. V. 38. P. 1032-1033.

Зенкин А.А. Алгоритмы построения 3D-моделей молекулярных систем // Тезисы IX Всесоюзной конференции ;Химическая информатика; Черноголовка. 1992. Ч. 1. С. 8.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно