Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Экономико математическая модель

Тип Реферат
Предмет Информатика
Просмотров
601
Размер файла
62 б
Поделиться

Ознакомительный фрагмент работы:

Экономико математическая модель

Экономико-математическая модель

Экономико-математическая модель – это выраженная в формально-математических терминах экономическая абстракция, логическая структура которой определяется как объективными свойствами предметами описания, так и субъективным целевым фактором исследования, для которого это описание предпринимается.

Между моделью и ее прототипом не может существовать взаимооднозначного соответствия, так как модель – это абстракция, связанная с обобщениями и потерей информации. Адекватность реальной действительности - основное требование ,предъявляемое к модели.

Конструктивно каждая математическая модель представляет собой совокупность взаимосвязанных математических зависимостей , отражающих определенные группы реальных экономических зависимостей.

Классифицируются экономико-математические модели по различным признакам, в том числе и по математическому инструменту, применяемому при моделировании.

Наиболее распространенными и эффективными математическими методами, которые нашли как теоретическое, так и практическое приложение в экономических исследованиях, являются: дифференциальное исчисление, математическая статистика, линейная алгебра, математическое программирование и другие.

Порядок построения экономико-математической модели

Для построения экономико-математической модели определяется объект исследования: экономика государства в целом, отрасль, предприятие, цех и т.п.

Формулируется цель исследования.

В рассматриваемом экономическом объекте выделяются структурные и функциональные элементы и выделяются наиболее существенные качественные характеристики этих элементов, влияющие на достижения поставленной цели.

Вводятся символические обозначения для учитываемых характеристик экономического объекта. Определяется, какие из них будут рассматриваться как зависимые величины, а какие как независимые.

Формализуются взаимосвязи между определенными параметрами модели, т.е. строится собственно экономико-математическая модель.

Проводятся расчеты по модели и анализируются результаты полученных расчетов.

Если результаты оказываются неудовлетворительными с точки зрения неадекватности отображения моделируемого процесса или явления ,то происходит возврат к одному из предшествующих пунктов и процесс повторяется.

Пример экономико-математической модели

Структуру предприятия удобно описывать организационной моделью, которая демонстрирует состав функциональных подразделений предприятия и связи их подчинения и взаимодействия.

При функциональной организационной структуре предприятие подразделяется на элементы, каждый из которых имеет свои задачи и обязанности. Характеристики и особенности того или иного подразделения соответствуют наиболее важным направлениям деятельности предприятия.

Функциональная организационная модель предприятия на примере ОАО швейная фабрика «Березка»:


Служба безопасности

Отдел кадров

Бухгалтерия

Отдел сбыта

Производство,

швейный цех

Руководство предприятия

Отдел конструкторов и дизайна


Такой вид организационной модели , как правило, встречается в крупных организациях, когда необходимо обеспечить слаженную совместную работу большого числа функциональных подразделений.

Объектом исследования будет являться швейная фабрика «Березка», целью исследования – оценка эффективности работы выпуска продукции. Более подробно для разрешения поставленной цели будем рассматривать функциональный и структурный элемент объекта - производство.

Наиболее существенные и качественные характеристики этого элемента представлены ниже в таблице 1 за временной период с мая 2005 по май 2006.

Для построения экономико-математической модели применен метод математической статистики.

Расчеты по модели и анализ полученных результатов при использовании данного метода включает в себя этапы:

1.Графическое представление характеристик.

2.Предварительный статистический анализ(анализ данных по выборкам).

3.Корреляционный анализ данных.

4.Регрессионный анализ данных.

сырье, м погонный

затраты на оплату труда,

тыс.руб.

материальные затраты, тыс.рубамортизация, тыс.руб.полная себестоимость, тыс.руб
май2301872921516464278164
июнь303741536225195161068
июль102734012064169730564
август17531561877012031750
сентябрь1553185432548536493611
октябрь1952822423190169377059
ноябрь1121993917061201853794
декабрь1852685025530281181330
январь981858921042406157179
февраль2482572835358371889639
март1111460722426253751239
апрель6839201319011821689
май282347509410410510

Исходные данные ОАО швейная фабрика «Березка»

Таблица 1

Из исходных характеристик экономического объекта являются независимыми (Х1,Х2,Х3,Х4) или факторными признаками : сырье, затраты на оплату труда, материальные затраты, амортизация, а зависимой или результативным признаком (У) – полная себестоимость.

1. Графический анализ

Рисунок 1

2. Анализ данных по выборкам.

Предварительный статистический анализ представлен в таблице 2., в ходе которого по каждому параметру рассчитывались следующие статистические показатели: среднее значение показателя, стандартная ошибка, медиана, мода, стандартное отклонение, дисперсия выборки, эксцесс, ассиметричность, минимум, максимум, интервал, сумма, коэффициент вариации. Брался уровень надежности 95%.

Таблица 2 Результаты расчетов по этапу Статистический анализ:

СЫРЬЕ, М ПОГОННЫЙ ЗАТРАТЫ НА ОПЛАТУ ТРУДА, Т.РУБ.
Среднее154,6153846Среднее16053,69231
Стандартная ошибка21,57531188Стандартная ошибка2876,404897
Медиана155Медиана18589
Мода#Н/ДМода#Н/Д
Стандартное отклонение77,79089328Стандартное отклонение10371,02535
Дисперсия выборки6051,423077Дисперсия выборки107558166,7
Эксцесс-0,406977947Эксцесс-1,508916139
Асимметричность0,302343811Асимметричность0,016663109
Интервал275Интервал29507
Минимум28Минимум2347
Максимум303Максимум31854
Сумма2010Сумма208698
Уровень надежности 95,0%47,00856628Уровень надежности 95,0%6267,147886
Коэффициент вариации V,%50,31251804Коэффициент вариации V,%64,60211861
МАТЕРИАЛЬНЫЕ ЗАТРАТЫ, Т.РУБ.

АМОРТИЗАЦИЯ,

Т.РУБ.

ПОЛНАЯ СЕБЕСТОИМОСТЬ,Т.РУБ.
Среднее21847,23077Среднее2371,846154Среднее56738,15385
Стандартная ошибка2536,823476Стандартная ошибка477,0664476Стандартная ошибка7447,106319
Медиана21516Медиана2018Медиана57179
Мода#Н/ДМода#Н/ДМода#Н/Д
Стандартное отклонение9146,647119Стандартное отклонение1720,087539Стандартное отклонение26850,92369
Дисперсия выборки83661153,53Дисперсия выборки2958701,141Дисперсия выборки720972102,8
Эксцесс-0,31202086Эксцесс-0,830489026Эксцесс-1,088043769
Асимметричность0,037275084Асимметричность0,204463241Асимметричность-0,288180418
Интервал31131Интервал5260Интервал83101
Минимум5094Минимум104Минимум10510
Максимум36225Максимум5364Максимум93611
Сумма284014Сумма30834Сумма737596
Уровень надежности 95,0%5527,26353Уровень надежности 95,0%1039,438496Уровень надежности 95,0%16225,85077
Коэффициент вариации V,%41,86639129Коэффициент вариации V,%72,52104172Коэффициент вариации V,%47,32428157

Расчет производился в оболочке «Excel», Сервис → Анализ данных → Описательная статистика.

Выводы: стандартные отклонения выборок исходных данных по сравнению со значениями самих данных велики, т.е. разброс точек в выборках большой.

Отклонения максимальных и минимальных значений выборок от соответствующих медиан и среднего также велики. Это означает , что точки выборок расположены рассеяно.

Значения коэффициента вариации выборок позволяет судить об их неоднородности.

3. Корреляционный анализ данных.

На этом этапе осуществляется парное сравнение выборки результирующего показателя с выборками показателей, которые согласно теоретической модели рассматриваются как факторные, а также проверяется степень коррелируемости факторных показателей. Для этих целей строят и анализируют матрицы парных линейных коэффициентов корреляции r, которые изменяются от -1 до 1. Анализ применим лишь в случае линейной зависимости между признаками. Чем ближе значения коэффициента корреляции к -1 или к 1, тем выше степень коррелируемости соответствующих случайных величин. Однако, при r, близких к 1 или -1, регрессионные связи между соответствующими величинами устанавливаться не могут, так как эта ситуация означает фактически функциональную взаимосвязь показателей.

Значимость (существенность) линейного коэффициента корреляции проверяют на основе t-критерия Стьюдента. При этом выдвигается и проверяется нулевая гипотеза о равенстве коэффициента нулю, т.е. об отсутствии связи между х и у. Для этого определяется расчетное значение критерия:

(1)

где r – коэффициент корреляции,

n – число наблюденеий,

σr – среднее квадратическое отклонение кэффициента корреляции.

и сопоставляется с tтабличное с заданными параметрами (уровнем значимости α, принимается обычно за 0,05, и числом степеней свободы υ = n – 2, где n – число наблюдений).

Если tрасчетное › tтабличное , то нулевая гипотеза отвергается и линейный коэффициент считается значимым, а связь между х и у – существенной, если же неравенство обратное, то связь между х и у отсутствует.

Вообще говоря, отсутствие корреляционной связи между факторным признаками и наличие тесной связи (значение парных коэффициентов корреляции )между результативным и факторными признаками – условие включения этих факторных признаков в регрессионную модель.

Кроме того, при построении модели регрессии необходимо учитывать проблему мультиколлениарности (тесной зависимости между факторными признаками), которая существенно искажает результаты исследования.

Одним из индикаторов определения наличия мультиколлинеарности между факторными признаками является превышение величины парного коэффициента корреляции 0,8 (r ≤ 0,8).

сырье,м погонныйзатраты на заработную плату,т.руб.

материальные затраты,

тыс.руб

амортизация,

тыс.руб.

полная себесто-

имость,

тыс.руб

сырье,м погонный1
затраты на заработную плату,т.руб.0,3496303051

материальные затраты,

тыс.руб

0,8301184880,5876475641

амортизация,

тыс.руб.

0,3772140530,7591642070,6121693661

полная себестоимость,

тыс.руб

0,6786042690,9098868660,8257153230,82472151

Таблица 3

Для определения наличия мультиколлениарности и устранения мультиколлениарных признаков была построена и проанализирована матрица парных коэффициентов корреляции, см. таблица 3.

Матрица парных коэффициентов корреляции

Расчет производился в оболочке «Excel», Сервис → Анализ данных → Корреляция.

Из таблицы 3 видно, что между факторными признаками Сырье и Материальные затраты коэффициент корреляции больше 0,8. Для устранения мультиколлинеарности необходимо исключить из корреляционной модели один из этих признаков, расчеты приведены в таблицах 4 и 5.

Матрица парных коэффициентов корреляции для модели без «Материальных затрат»

сырье, м погонный

затраты на оплату труда,

тыс.руб.

амортизация,

тыс.руб.

полная себестоимость,

тыс.руб

сырье, м погонный1
затраты на оплату труда, тыс.руб.0,3496303051
амортизация, тыс.руб.0,3772140530,7591642071
полная себестоимость, тыс.руб0,6786042690,9098868660,8247215041

Таблица 4

Матрица парных коэффициентов корреляции для модели без «Сырья»

затраты на оплату труда,

тыс.руб.

материальные затраты,

тыс.руб

амортизация,

тыс.руб.

полная себестоимость,

тыс.руб

затраты на оплату труда ,тыс.руб.1
материальные затраты, тыс.руб0,5876475641

амортизация,

тыс.руб.

0,7591642070,6121693661

полная себестоимость,

тыс.руб

0,9098868660,8257153230,8247215041

Таблица 5

В обеих моделях теперь отсутствует проблема мультиколлениарности, т.к. все парные коэффициенты между факторными признаками < 0,8.

Так как коэффициент корреляции r между результативным и факторными признаками больше > 0,3, то все признаки дальше участвуют в анализе.

Какую из этих двух модель необходимо выбрать покажет дальнейший анализ.

Для определения признаков рассчитали tрасчетное и взяли tтабличное,см. таблицы 6 и 7.

Матрица расчетных значений t – критерия Стьюдента

для модели без «Материальных затрат»

сырье, м погонныйзатраты на оплату труда, тыс.руб.амортизация, тыс.руб.полная себестоимость, тыс.руб
сырье, м погонный

Затраты

на оплату труда,

тыс.руб.

1,237707018

амортизация,

тыс.руб.

1,3508716313,868284073
полная себестоимость, тыс.руб3,0642113487,2742105954,836609752
tтабличное2,200985159

Таблица 6

Матрица расчетных значений t – критерия Стьюдента

для модели без «Сырья»

затраты на оплату труда,тыс.руб.материальные затраты, тыс.рубамортизация, тыс.руб.

полная себестоимость

,тыс.руб

затраты на оплату труда тыс.руб.
материальные затраты, тыс.руб2,408806699

амортизация,

тыс.руб.

3,8682840732,567683844

полная себестоимость,

тыс.руб

7,2742105954,8549029514,836609752
tтабличное2,200985159

Таблица 7

Расчет производился в оболочке «Excel» вручную по формуле (1), tтабличное рассчитывалось с помощью функции СТЬЮДРАСПОБР исходя из той же формулы.

Выводы: в результате сравнения tрасчетное и tтабличное выяснилось, что с вероятностью 0,95 можно утверждать , что связь между результативным и факторными признаками является существенной (tрасчетное › tтабличное), неслучайной. Какую из этих двух модель лучше выбрать покажет дальнейший анализ.

4. Регрессионный анализ данных.

На этом этапе, используя метод наименьших квадратов, строится многофакторная регрессионная зависимость(уравнение регрессии) результирующего показателя от оставшейся после предшествующих шагов анализа факторных показателей.

Линейная модель ,содержащая независимые переменные только в первой степени, имеет вид:

(2)

где а0 – свободный член,

а1…аn – параметры уравнения (коэффициенты регрессии),

х1….хn – значения факторных признаков.

Параметры уравнения регрессии рассчитываются методом наименьших квадратов , при этом решается система нормальных уравнений с к+1 неизвестными.

Для измерения степени совокупности влияния отобранных факторов на результативный признак рассчитывают совокупный коэффициент детерминации R2 и совокупный коэффициент множественной корреляции R – общие показатели тесноты связи признаков. Пределы изменения : 0 ≤ R ≥ 1. Чем ближе R к 1 , тем точнее уравнение множественной линейной регрессии отражает реальную связь.

Проверка значимости моделей, построенных на основе уравнений регрессии, начинается с проверки значимости каждого коэффициента регрессии. Значимость коэффициента регрессии осуществляется с помощью t – критерия Стьюдента ( отношение коэффициента регрессии к его средней ошибке):

(3)

Коэффициент регрессии считается статистически значимым , если tрасчетное › tтабличное с заданными параметрами (уровнем значимости α, = 0,05, и числом степеней свободы υ = n - к -1, где n – число наблюдений, к – число факторных признаков).

Проверка адекватности модели осуществляется с помощью F – критерия Фишера и величины средней ошибки аппроксимации, которая не должна превышать 12 – 15% . Если величина Fрасчетное > Fтабличное , то связь признается существенной. Fтабличное находиться при заданном уровне значимости α = 0,05 и числе степеней свободы v1 =k и v2 = n-k-1. (4)

Модель без учета «Материальных затрат»


В таблице 8 сгенерированы результаты по регрессионной статистике.

Регрессионная статистика
Множественный R0,997434896
R-квадрат0,994876372
Нормированный R-квадрат0,993168496
Стандартная ошибка2219,306976
Наблюдения13

Таблица 8

Эти результаты соответствуют следующим статистическим показателям:

Множественный R – коэффициент корреляции R,

R-квадрат – коэффициент детерминации R2;

F табличное
3,862548358

В таблице 9 сгенерированы результаты дисперсионного анализа, которые используются для проверки значимости коэффициента детерминации R2.

Таблица 9

dfSSMSFЗначимость F
Регрессия386073373232869112441582,52264381,2734E-10
Остаток944327911,14925323,455
Итого128651665234

Df – число степеней свободы, SS – сумма квадратов отклонений,

MS - дисперсия MS, F – расчетное значение F-критерия Фишера,

Значимость F – значение уровня значимости, соответствующее вычисленному F;

Коэффи

циенты

Стандарт

ная

ошибка

t-статистикаP-ЗначениеНижние 95%Верхние 95%

полная

себесто-

имость,

тыс.руб

2857,5930111130,0149062,5288100140,094646561603,54116136318,727183

сырье,

м погонный

132,30000478,94195991814,795414641,27093E-07112,071886152,5281233

затраты

на оплату

труда,

тыс.руб.

1,5860390720,09543247816,619489584,61669E-081,3701558091,801922334

амортизация,

тыс.руб.

3,3573684680,5820828185,767853580,0002701582,0406056534,674131282

В таблице 10 сгенерированы значения коэффициентов регрессии и их

статистические оценки.

t табличное2,306004133

Таблица 10

Коэффициенты – значения коэффициентов регрессии,

Стандартная ошибка – стандартные ошибки коэффициентов регрессии,

t – статистика – расчетные значения t – критерия Стьюдента, вычисляемые по формуле 2,

Р-значения – значения уровней значимости ,соответствующие вычисленным значениям t,

Нижние 95% и Верхние 95% - соответствующие границы доверительных интервалов для коэффициентов регрессии.

В таблице 11 сгенерированы предсказанные значения результирующего фактора Y и значения остатков. Последние вычисляются как разность между предсказанным и исходным значениям Y.

НаблюдениеПредсказанное YОстатки
178576,42428-412,4242814
261255,20002-187,2000206
333691,17456-3127,174561
431418,51735331,4826465
591894,706781716,293221
679104,48549-2045,485491
756074,39615-2280,396148
879355,805711974,194293
958940,14712-1761,147116
1088956,30336682,6966372
1149227,810052011,189951
1218467,435973221,564032
1310633,59316-123,5931632

Таблица 11

Расчет производился в оболочке «Excel», Сервис → Анализ данных → Регрессия.

tтабличное рассчитывалось с помощью функции СТЬЮДРАСПОБР исходя из формулы (3).

Fтабличное рассчитывалось с помощью функции FРАСПОБР исходя из формулы (4).

Модель без учета «Сырья»

Регрессионная статистика
Множественный R0,983232832
R-квадрат0,966746802
Нормированный R-квадрат0,955662403
Стандартная ошибка5653,863353
Наблюдения13

Таблица 12

dfSSMSFЗначимость F
Регрессия38363969696278798989987,216886745,68904E-07
Остаток9287695537,331966170,81
Итого128651665234

Таблица 13

Коэффи

циенты

Станда

ртная

ошибка

t-статистикаP-Значение

Нижние

95%

Верхние 95%

полная

себесто

имость,

тыс.руб

1992,8884884236,3117120,4704300870,649239402-7590,31437611576,09135

затраты

на оплату

труда, тыс.руб.

1,4303634910,2489832745,7448175760,0002781070,8671241951,993602788

матери

альные

затраты,

тыс.руб

1,1875856840,2323899085,110315210,0006362330,6618831891,713288179

аморти

зация,

тыс.руб.

2,4610329291,5361239691,6021056750,143596048-1,0139209045,935986761
t табличное2,306004133

Таблица 14

НаблюдениеПредсказанное YОстатки
165758,3747512405,62525
260420,80042647,1995839
330995,16308-431,1630845
429093,42292656,577097
599410,20661-5799,206609
674070,108432988,891574
755740,66995-1946,669945
877635,17433694,825697
963565,34811-6386,348112
1089934,05543-295,0554319
1155762,64509-4523,645092
1223554,57043-1865,57043
1311655,4605-1145,460501

Таблица 15

Все пояснения к таблицам , а также способ расчета, указаны в модели без учета «Материальных затрат» .

Перейдем к анализу сгенерированных таблиц обеих моделей.

Значение множественного коэффициента регрессии R в модели без учета «Материальных затрат» равно 0, 997, а в модели без учета «Сырья» равно 0,983. Это позволяет сделать вывод, что первая модель точнее отражает реальную связь.

При оценке значимости коэффициентов регрессии с помощью сравнения расчетного и табличного значений t – критерия Стьюдента стало очевидно, что следует выбрать модель «Материальных затрат». В данной модели tрасчетное найденных коэффициентов превышает tтабличное (см. таблицу 10) t – критерия Стьюдента, что позволяет сделать вывод, что коэффициенты регрессии в уравнении являются значимыми.

Тогда как в модели без учета «Сырья» два коэффициента регрессии ниже tтабличное ( см. таблицу 14), что говорит об отсутствии их значимости.

Проверку адекватности модели осуществляем уже только с моделью без учета «Материальных затрат».

Значение средней ошибки аппроксимации не превышает 12-15 %, что хорошо видно на рисунке 2, так как разница между предсказанным и исходным результирующим фактором Y очень небольшая.

Рассчитанный уровень значимости (см. таблицу 9) равен 1,2734E-10 < 0,05, это подтверждает значимость R2. Значение Fрасчетное – критерия Фишера больше Fтабличное, значит связь между признаками признается существенной.

Рисунок 2

Таким образом, получаем искомое уравнение регрессии:

Выводы: Выполнив данную работу по этапам, была построена экономико-математическая модель методом математической статистики на примере ОАО швейной фабрики «Березка». Модель имеет вид:

.

Выбранные факторы Х12 и Х3 существенно влияют на У, что подтверждает правильность их включения в построенную модель.

Так как коэффициент детерминации R2 значим, то это свидетельствует о существенности связи между рассматриваемыми признаками.

Отсюда следует, что построенная модель эффективна.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно