Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Исследование частотных характеристик типовых динамических звеньев

Тип Реферат
Предмет Промышленность и производство
Просмотров
707
Размер файла
388 б
Поделиться

Ознакомительный фрагмент работы:

Исследование частотных характеристик типовых динамических звеньев

Министерство образования и науки Украины

Донбасская Государственная Машиностроительная Академия

Кафедра АПП

Лабораторная работа

по дисциплине

Теория автоматического управления

Тема

Исследование частотных характеристик типовых динамических звеньев

Краматорск

Задание

Таблица 1

№ п/пПараметры динамических звеньев
Безынерцион.Апериодич. 1-го порядкаАпериодич. 2-го порядкаКолебательноеРеальные дифференцирующие и интегрирующие, звено запаздывания
KT, сT1, сT2, сT, сξT, с
1425-370.06 – 0.50.260.06 – 0.50.06 – 0.50.1-0.90.06 – 0.5

1. Исследование безынерционного звена

1.1 Исследование частотных характеристик безынерционного звена

Для исследования частотных характеристикбезынерционного звена в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 1 для трех значений K:

.

ЛАЧХ звеньев представлены на рисунке 2, графики переходной функции – на рисунке 3.

Рисунок 1 – Структурная схема для исследования безынерционного звена


Рисунок 2 – ЛАЧХ безынерционных звеньев

Рисунок 3 – Переходные функции безынерционных звеньев


1.2 Реализация безынерционного звена

Реализуем безынерционное звено с коэффициентом усиления на операционных усилителях (рисунки 4 и 7). ЛАЧХ и ЛФЧХ инвертирующего и неинвертирующего усилителей представлены на рисунках 5 и 8, переходные функции – на рисунках 6 и 9. Для сравнения частотных характеристик идеальных и реальных звеньев изобразим их ЛЧХ в совмещенных координатах (рисунок 10).

Рисунок 4 – Электрическая принципиальная схема инвертирующего усилителя с коэффициентом усиления

Рисунок 5 – ЛАЧХ и ЛФЧХ инвертирующего усилителя


а)

б)

Рисунок 6 – Переходные функции идеального безынерционного звена и инвертирующего усилителя


Рисунок 7 – Электрическая принципиальная схема неинвертирующего усилителя с коэффициентом усиления

Рисунок 8 – ЛАЧХ и ЛФЧХ неинвертирующего усилителя


а)

б)

Рисунок 9 – Переходные функции идеального безынерционного звена и неинвертирующего усилителя


Рисунок 10 – ЛАЧХ и ЛФЧХ идеального безынерционного звена, инвертирующего усилителя и неинвертирующего усилителя

При рассмотрении частотных и временных характеристик безынерционных звеньев можно сделать следующие выводы:

· при прохождении через безынерционный элемент амплитуда и фаза выходного сигнала не зависит от частоты входного сигнала

· при увеличении (уменьшении) коэффициента усиления ЛАЧХ увеличивается (уменьшается) во столько же раз, а ЛФЧХ не меняется.


2. Исследование апериодического звена 1-го порядка

a. Исследование частотных характеристик апериодического звена 1-го порядка

Для исследования частотных характеристикапериодического звена 1-го порядка в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 11, для трех значений :

.

Логарифмические частотные характеристики апериодических звеньев представлены на рисунке 12, графики переходной функции – на рисунке 13.

Рисунок 11 – Структурная схема для исследования апериодических звеньев 1-го порядка


Рисунок 12 – Логарифмические частотные характеристики апериодических звеньев 1-го порядка

Рисунок 13 – Переходные функции апериодических звеньев 1-го порядка


b. Реализация апериодического звена 1-го порядка

Реализуем апериодическое звено 1-го порядка с постоянной времени на -цепочке и на -цепочке (рисунок 14). ЛАЧХ и ЛФЧХ -цепочки и на-цепочки представлены на рисунке 15, а и 15, б. Для сравнения частотных характеристик идеальных и реальных апериодических звеньев изобразим их ЛЧХ в совмещенных координатах (рисунок 15, в).

а)б)

а) -цепочка;

б) -цепочка

Рисунок 14 – Электрическая принципиальная схема апериодических звеньев 1-го порядка с постоянной времени

а) б)


в)

Рисунок 15 – ЛАЧХ и ЛФЧХ апериодических звеньев

а) -цепочка; б) -цепочка; в) совмещенные ЛЧХ идеального апериодического звена, -цепочка и -цепочка

При анализе частотных характеристик апериодических звеньев 1-го порядка можно сделать следующие выводы:

· увеличение (уменьшение) постоянной времени звена приводит к сдвигу ЛАЧХ и ЛФЧХ влево (вправо).

· чем меньше постоянная времени Т, тем шире полоса пропускания (т.к.~).

· при уменьшении постоянной времени уменьшается время переходного процесса и наоборот.

· чем меньше постоянная времени, тем меньше время переходного процесса и шире полоса пропускания, следовательно, чем меньше время переходного процесса, тем шире полоса пропускания.

· если на график ЛАЧХ заменить ломаной кривой и из точки ''разлома'' опустить прямую на ось , то это и будет сопрягающая частота. Постоянную времени можно определить, зная сопрягающую частоту : .


c. Исследование частотных характеристик апериодического звена 2-го порядка

Для исследования частотных характеристикапериодического звена 2-го порядка в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 16, при неизменной первой постоянной времени и для трех значений :

.

Логарифмические частотные характеристики апериодических звеньев 2-го порядка представлены на рисунке 17, графики переходной функции – на рисунке 18.

Рисунок 16 – Структурная схема для исследования апериодических звеньев 2-го порядка


Рисунок 17 – Логарифмические частотные характеристики апериодических звеньев 2-го порядка

Рисунок 18 – Переходные функции апериодических звеньев 2-го порядка

d. Реализация апериодического звена 2-го порядка

Попробуем реализовать апериодическое звено 2-го порядка с постоянными времени и на двух последовательно соединенных -цепочках, отдельно каждая из которых представляет собой апериодическое звено 1-го порядка (рисунок 19). ЛАЧХ и ЛФЧХ данного звена и необходимого апериодического звена 2-го порядка представлены на рисунке 20, а, а их переходные функции – на рисунке 20, б.

Рисунок 19 – Электрическая принципиальная схема двух последовательно соединенных апериодических звеньев 1-го порядка с постоянными времени и

а)б)

а) ЛАЧХ и ЛФЧХ; б) переходная функция

Рисунок 20 – Характеристики последовательно соединенных -цепочек

Реализуем апериодическое звено 2-го порядка с постоянными времени и на двух последовательно соединенных -цепочках, разделенных промежуточным (разделяющим, развязывающим) усилителем (повторителем) (рисунок 21). ЛАЧХ и ЛФЧХ данного звена и необходимого апериодического звена 2-го порядка представлены на рисунке 22, а, а их переходные функции – на рисунке 22, б.

Рисунок 21 – Электрическая принципиальная схема двух -цепочек с постоянными времени и , разделенных операционным усилителем

а) б)

а) ЛАЧХ и ЛФЧХ;

б) переходная функция

Рисунок 22 – Характеристики последовательно соединенных -цепочек с разделительным усилителем


При анализе частотных характеристик апериодических звеньев 2-го порядка можно сделать следующие выводы:

· увеличение (уменьшение) постоянной времени звена приводит к сдвигу ЛАЧХ и ЛФЧХ влево (вправо).

· увеличение (уменьшение) постоянной времени звена приводит к увеличению (уменьшению) времени переходного процесса.

· на полосу пропускания большее влияние оказывает большая постоянная времени

· при увеличении постоянной времени звена время переходного процесса увеличивается, а полоса пропускания уменьшается, следовательно, при увеличении времени переходного процесса полоса пропускания уменьшается и наоборот.

e. Аппроксимация апериодического звена 2-го порядка звеном 1-го порядка

Ввиду того, что апериодическое звено 2-го порядка можно аппроксимировать звеном 1-го порядка, если одна постоянная времени намного превышает вторую ( в 10 раз), сравним характеристики звена с постоянными времени и со звеном 1-го порядка, изображенным на рисунке 23.

Аппроксимация апериодического звена 2-го порядка звеном 1-го порядка


а) б)

а) ЛАЧХ и ЛФЧХ;б) переходные функции

Рисунок 24 – Характеристики апериодического звена 2-го порядка и инерционного звена

При анализе характеристик апериодических звеньев (рисунок 24) можно сделать следующие выводы:

· апериодическое звено 2-го порядка можно аппроксимировать апериодическим звеном 1-го порядка, если первая постоянная времени намного меньше второй, т.к. в таком случае влияние первой экспоненты на форму выходного сигнала несущественно.

Исследование колебательного звена

При исследовании колебательного звена необходимо пронаблюдать за характером его частотных характеристикпри изменении постоянной времени и декремента затухания в пределах, указанных в индивидуальном задании. Т.е. необходимо исследовать частотные характеристики при постоянных времени и декременте затухания .


f. Исследование частотных характеристик колебательного звена при изменении постоянной времени () и неизменном декременте затухания ()

Для исследования колебательного звена при изменении постоянной времени () и неизменном декременте затухания в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 25. Логарифмические частотные характеристики колебательного звена представлены на рисунке 26, графики переходной функции – на рисунке 27.

Рисунок 25 – Структурная схема для исследования колебательныхзвеньев при изменении постоянной времени () и неизменном декременте затухания ()


Рисунок 26 – Логарифмические частотные характеристики колебательных звеньев при изменении постоянной времени () и неизменном декременте затухания ()

Рисунок 27 – Переходные функции колебательныхзвеньев при изменении постоянной времени () и неизменном декременте затухания ()


g. Исследование частотных характеристик колебательного звена при изменении постоянной времени () и неизменном коэффициенте демпфирования ()

Для исследования колебательного звена при изменении постоянной времени () и неизменном декременте затухания () в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 28. Логарифмические частотные характеристики колебательного звена представлены на рисунке 29, графики переходной функции – на рисунке 30.

Рисунок 28 – Структурная схема для исследования колебательныхзвеньев при изменении постоянной времени () и неизменном декременте затухания ()


Рисунок 29 – Логарифмические частотные характеристики колебательных звеньев при изменении постоянной времени () и неизменном декременте затухания ()

Рисунок 30 – Переходные функции колебательныхзвеньев при изменении постоянной времени () и неизменном декременте затухания ()


h. Исследование частотных характеристик колебательного звена при неизмененной постоянной времени () и изменении декремента затухания ().

Для исследования колебательного звена при неизмененной постоянной времени () и изменении коэффициента демпфирования () в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 31. Логарифмические частотные характеристики колебательного звена представлены на рисунке 32, графики переходной функции – на рисунке 33.

Рисунок 31 – Структурная схема для исследования колебательного звена при неизмененной постоянной времени () и изменении декремента затухания ()


Рисунок 32 – Логарифмические частотные характеристики колебательных звеньев при изменении постоянной времени () и неизменном декременте затухания ()

Рисунок 33 – Переходные функции колебательного звена при неизмененной постоянной времени () и изменении декремента затухания ()

i. Реализация колебательного звена

Реализуем колебательное звено с постоянной времени и коэффициентом демпфирования на -контуре (рисунок 34). ЛАЧХ и ЛФЧХ данного звена и необходимого колебательного звена представлены на рисунке 35, а, а их переходные функции – на рисунке 35, б.

Рисунок 34 – Электрическая принципиальная схема колебательного -контура

а) б)

а) ЛАЧХ и ЛФЧХ;б) переходная функция

Рисунок 35 – Характеристики колебательного звена и -контура

При анализе графиков частотных характеристик и переходных процессов (рисунок 35) колебательных звеньев можно сделать следующие выводы:

· увеличение (уменьшение) постоянной времени звена при неизменном декременте затухания приводит к сдвигу частотных характеристик влево (вправо).

· при неизменном коэффициенте демпфирования увеличение постоянной времени звена приводит к сужению полосы пропускания; колебательность переходного процесса не меняется.

· при неизменной постоянной времени увеличение (уменьшение) коэффициента демпфирования приводит к уменьшению (увеличению) колебательности переходного процесса и к более плавной ЛФЧХ.

· при неизменной постоянной времени увеличение (уменьшение) коэффициента демпфирования приводит к уменьшению (увеличению) перерегулирования, сужению (расширению) полосы пропускания и уменьшению (увеличению) колебательности.

3. Исследование дифференцирующих звеньев

a. Исследование частотных характеристик идеального дифференцирующего звена

Для исследования частотных характеристикидеального дифференцирующего звена в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 36. Логарифмические частотные характеристики идеального дифференцирующего звена представлены на рисунке 37, график переходной функции – на рисунке 38.

Рисунок 36 – Структурная схема для исследования идеального дифференцирующего звена

Рисунок 37 – Логарифмические частотные характеристики идеального дифференцирующего звена


Рисунок 38 – Переходная функция идеального дифференцирующего звена

b. Реализация идеального дифференцирующего звена

Реализуем идеальное дифференцирующее звено схемой, изображенной на рисунке 39. ЛАЧХ и ЛФЧХ дифференцирующего звена представлены на рисунках 40 и 41, переходная функция – на рисунке 42.

Рисунок 39 – Электрическая принципиальная схема дифференцирующего звена

Рисунок 40 – ЛАЧХ и ЛФЧХ дифференцирующего звена

Рисунок 41 – ЛАЧХ и ЛФЧХ дифференцирующего звена с инвертором


а)

б)

Рисунок 42 – Переходная функция схемы реализации идеального дифференцирующего звена


c. Исследование частотных характеристик реального дифференцирующего звена

Для исследования частотных характеристикреальногодифференцирующего звена в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 43. Логарифмические частотные характеристики реальногодифференцирующего звена представлены на рисунке 44, переходные функции – на рисунке 45.

Рисунок 43 – Структурная схема для исследования реальногодифференцирующего звена


Рисунок 44 – Логарифмические частотные характеристики реальногодифференцирующего звена

Рисунок 45 – Переходные функции реальногодифференцирующего звена

d. Реализация реального дифференцирующего звена

Реализуем реальноедифференцирующее звено с помощью схем, изображенных на рисунке 46. ЛАЧХ и ЛФЧХ дифференцирующего звена представлены на рисунках 47, переходные функции – на рисунке 48.

а)б)

а) -цепочка;б) -цепочка

Рисунок 46 – Электрические принципиальные схемы реального дифференцирующего звена

Рисунок 47 – ЛАЧХ и ЛФЧХ схем реализации дифференцирующего звена


Рисунок 48 – Переходная функция схемы реальногодифференцирующего звена


4. Исследование интегрирующих звеньев

a. Исследование частотных характеристик идеального интегрирующего звена

Для исследования частотных характеристикидеального интегрирующего звена в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 49. Логарифмические частотные характеристики идеального интегрирующего звена представлены на рисунке 50, график переходной функции – на рисунке 51.

Рисунок 49 – Структурная схема для исследования идеального интегрирующего звена

Рисунок 50 – Логарифмические частотные характеристики идеального интегрирующего звена


Рисунок 51 – Переходная функция идеального интегрирующего звена

b. Реализация идеального интегрирующего звена

Реализуем идеальное интегрирующее звено схемой, изображенной на рисунке 52. ЛАЧХ и ЛФЧХ интегрирующего звена представлены на рисунках 53 и 54, переходная функция – на рисунке 55.

Рисунок 52 – Электрическая принципиальная схема интегрирующего звена


Рисунок 53 – ЛАЧХ и ЛФЧХ интегрирующего звена

Рисунок 54 – ЛАЧХ и ЛФЧХ интегрирующего звена с инвертором


Рисунок 55 – Переходная функция схемы реализации идеального интегрирующего звена

c. Исследование частотных характеристик реального интегрирующегозвена

Для исследования частотных характеристикреальногоинтегрирующего звена в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 56. Логарифмические частотные характеристики реальногоинтегрирующего звена представлены на рисунке 57, переходные функции – на рисунке 58.


Рисунок 56 – Структурная схема для исследования реальногоинтегрирующего звена

Рисунок 57 – Логарифмические частотные характеристики реальногоинтегрирующего звена


Рисунок 58 – Переходные функции реальногоинтегрирующего звена

При анализе частотных и переходных характеристик реальногоинтегрирующего звена и его реализации можно сделать следующие выводы:


5. Исследование изодромного звена

Изодромное звено можно условно представить в виде совокупности двух звеньев, действующих параллельно, - идеального интегрирующего и безынерционного. Поэтому данное звено совмещает полезные качества обоих звеньев и часто используется в качестве регулирующего устройства ПИ-регулятора (пропорционально-интегрального регулятора).

a. Исследование частотных характеристик изодромного звена

Для исследования частотных характеристикизодромногозвена в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 59. Логарифмические частотные характеристики изодромногозвена представлены на рисунке 60.

Рисунок 59 – Структурная схема для исследования изодромногозвена


Рисунок 60 – Логарифмические частотные характеристики изодромногозвена

b. Реализация изодромного звена

Реализуем изодромноезвено схемой, изображенной на рисунке 61. ЛАЧХ и ЛФЧХ интегрирующего звена представлены на рисунках 62 и 63, переходная функция – на рисунке 64.

Рисунок 61 – Электрическая принципиальная схема изодромногозвена


Рисунок 62 – ЛАЧХ и ЛФЧХ изодромногозвена

Рисунок 63 – ЛАЧХ и ЛФЧХ изодромногозвена с инвертором


а) б)

а) без инвертора;

б) с инвертором

Рисунок 64 – Переходная функция изодромногозвена


6. Исследование звена запаздывания

Для исследования частотных характеристикзвена запаздывания в прикладном пакете ProteusISIS составляем структурную схему, представленную на рисунке 65. Логарифмические частотные характеристики изодромногозвена представлены на рисунке 66, переходные характеристики – на рисунке 67.

Рисунок 65 – Структурная схема для исследования звена запаздывания

Рисунок 66 – Логарифмические частотные характеристики звена запаздывания


Рисунок 67 – Переходные функции звена запаздывания


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно