Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Зависимость между деформациями и напряжениями при плоском и объемном напряженных состояниях

Тип Реферат
Предмет Промышленность и производство
Просмотров
1029
Размер файла
107 б
Поделиться

Ознакомительный фрагмент работы:

Зависимость между деформациями и напряжениями при плоском и объемном напряженных состояниях

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛНЕКТРОНИКИ

Кафедра инженерной графики

РЕФЕРАТ на тему:

«ЗАВИСИМОСТЬ МЕЖДУ ДЕФОРМАЦИЯМИ И НАПРЯЖЕНИЯМИ ПРИ ПЛОСКОМ И ОБЪЕМНОМ НАПРЯЖЕННЫХ СОСТОЯНИЯХ»

МИНСК, 2008


Определим деформации ε1 и ε2 в направлениях главных напряжений при плоском напряженном состоянии (рис. 1). Для этого используем закон Гука для одноосного напряженного состояния, а также зависимость между продольной и поперечной деформациями и принцип независимости действия сил (принцип сложения деформаций).

От действия одного напряжения σ1 относительное удлинение по вертикали равно

и одновременно в горизонтальном направлении относительное сужение равно

От действия одного только σ2 имели бы в горизонтальном направлении удлинение и в вертикальном на-

правлении сужение Суммируя деформации, получаем:

(1)

Эти формулы выражают обобщенный закон Гука для плоского напряженного состояния. Если известны деформации ε1 и ε 2, то, решая уравнения [1] относительно напряжений σ1 и σ2, получим следующие формулы:

(2)

Аналогично для объемного (пространственного) напряженного состояния, когда все три главных напряжения σ1, σ2 и σ3отличны от нуля, получим:

(3)

Уравнения (3) представляют собой обобщенный закон Гука для объемного напряженного состояния. Деформации ε1, ε2 и ε3 в направлении главных напряжений называются главными деформациями.

Зная ε1, ε2 и ε3, можно вычислить изменение объема при деформации. Возьмем кубик 1x1x1 см. Объем его до деформации равен V0= 1 см3. Объем после деформации равен

(произведениями , как величинами, малыми по сравнению с самими , .пренебрегаем).

Относительное изменение объема v

(4)

Подставив сюда значения ε1, ε2 и ε3 из уравнений (2.40), получим

(5)

Из формулы (5) следует, что коэффициент Пуассона μ не может быть больше 0,5. Действительно, при трехосном растяжении, очевидно, объем элемента уменьшиться не может, т. е. εvположительно, а это возможно лишь при условии 1—2 μ≥0, так как главные напряжения в этом случае положительны (σ1≥σ2≥σ3>0).

Формулы [2] — [5] выражают зависимость не только между главными деформациями и напряжениями, но и между любыми (неглавными) значениями этих величин, т. е. они остаются справедливыми и тогда, когда на площадках действуют также касательные напряжения.

Это следует из того, что линейные деформации (в направлениях, перпендикулярных т) не зависят от касательных напряжений.

РАБОТА ВНЕШНИХ И ВНУТРЕННИХ СИЛ ПРИ РАСТЯЖЕНИИ (СЖАТИИ). ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ ДЕФОРМАЦИИ

При растяжении (сжатии) внешние силы совершают работу вследствие перемещения точек их приложения (рис. 2, а).

Вычислим работу статически приложенной внешней силы, т. е. такой силы, величина которой растет в процессе деформации от нуля до своего конечного значения с весьма небольшой скоростью.

Элементарная работа dAвнешней силы Р наперемещении dδ равна

(6)

Но между δ и Р существует зависимость (закон Гука)

,

откуда

Подставляя это значение в формулу (2.43), получаем

Полную работу силы получим, интегрируя это выражение в пределах от нуля до окончательного значения перемещения δ1

Таким образом,

(7)

т. е. работа внешней статически приложенной силы равна половине произведения окончательной величины силы на окончательную величину соответствующего перемещения.

Графически работа силы Р выражается (с учетом масштабов) площадью ОАВ диаграммы, построенной в координатах δ — Р (рис. 2, б).

Отметим, что работа силы Р1, неизменной по величине, на перемещении δ1, равна т. е. в два раза больше, чем при статическом действии.

При деформации совершают работу не только внешние силы, но и внутренние (силы упругости).

Работу внутренних сил при растяжении (сжатии) можно вычислить следующим образом.

На рис. 3 показан элемент dzстержня, на который действуют нормальные напряжения σ, являющиеся для этого элемента внешними силами.

Внутренние силы, очевидно, будут направлены в противоположную сторону, т. е. в сторону, противоположную перемещению. Поэтому работа внутренних сил при нагружении всегда отрицательна.

Элементарная работа внутренних сил (для элемента dz) вычисляется по формуле, аналогичнойформуле [7]

(8)

где N — внутреннее усилие (продольная сила);

Δ(dz) — удлинение элемента.

Но, согласно закону Гука, имеем

Следовательно,

(9) рис. 3

Полную работу внутренних сил получим, интегрируя обе части формулы по длине всего стержня l

(10)

Если N, Е и Fпостоянны, то

где Δl = δ =— удлинение стержня.

Величина, равная работе внутренних сил, но имеющая противоположный знак, называется потенциальной энергией деформации. Она представляет собой энергию, накапливаемую телом при деформации.

Таким образом, для стержня постоянного сечения при продольной силе, имеющей одно и то же значение во всех поперечных сечениях, потенциальная энергия при растяжении (сжатии) определяется по формуле

(11)

Потенциальная энергия, отнесенная к единице объема материала, называется удельной потенциальной энергией:

или

(так как σ=Еε),

или

(12)

При объемном напряженном состоянии удельная потенциальная энергия получится как сумма трех слагаемых (на основании принципа независимости действия сил)

(13)

Используя обобщенный закон Гука, получаем

(14)

Из этой формулы, как частный случай, полагая одно из главных напряжений равным нулю, легко получить формулу для плоского напряженного состояния.


СВОЙСТВА МЕХАНИЧЕСКОЙ ЭНЕРГИИ

Отметим два важных свойства механической энергии, которые широко используются в современных методах расчета конструкций при любых деформациях: растяжении, кручении, изгибе и т. д.

1. Закон сохранения механической энергии

При преобразовании энергии внешних сил в энергию внутренних сил и обратно имеет место закон сохранения энергии, который может быть сформулирован следующим образом:

Когда упругое тело (система) под влиянием какой-либо нагрузки переходит из недеформированного состояния в деформированное уравновешенное состояние, то суммарная работа, произведенная в этом процессе внешними и внутренними силами, равна нулю

A+W=0, (15)

где А — работа внешних сил (положительная при нагружении);

W— работа внутренних сил (отрицательная при нагружении). Учитывая, что W = — Uуравнение [15] можно заменить равенством

A=U(16)

где U— потенциальная энергия деформации.

Этот закон сохраняет свою силу при медленном (статическом) нагружении и при упругих деформациях.

При динамическом нагружении и при появлении пластических деформаций часть энергии внешних сил преобразуется в кинетическую энергию движения тела, в электромагнитную, тепловую, и другие виды энергии.

Закон сохранения энергии предоставляет в наше распоряжение одно уравнение, пользуясь которым можно определить одно неизвестное, например, перемещение по направлению внешней силы, или неизвестное усилие в одном из стержней.

2. Закон минимума потенциальной энергии деформации (принцип наименьшей работы)

Широкое применение в расчетах конструкций имеет также следующий энергетический закон, называемый принципом наименьшей работы:

Действительное напряженное состояние равновесия упругого тела (системы) отличается от всех смежных состояний равновесия тем, что оно дает минимум потенциальной энергии деформации.

Поэтому если потенциальная энергия деформации зависит от неизвестных величин, например, усилий Хъ Х2 и т. д., то можно определить все эти неизвестныеиз условий минимума энергии

… (17)

Принцип наименьшей работы справедлив для линейно-деформируемых (т. е. подчиняющихся закону Гука) упругих тел и систем. Он предоставляет в наше распоряжение любое, нужное нам число уравнений (и при том, линейных) для определения искомых неизвестных величин.

В следующем параграфе показывается применение этого принципа к расчету простейших статически-неопределимых систем.

О других свойствах механической энергии будет сказано далее, в соответствующих местах курса.


СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ ЗАДАЧИ ПРИ РАСТЯЖЕНИИ И СЖАТИИ

Имеется много конструкций, в элементах которых усилия не могут быть определены только из уравнений равновесия.

Такие конструкции (системы) называются статически неопределимыми.

Рассмотрим, например, стержень, изображенный на рис. 4. Нагрузка Р воспринимается частично верхней заделкой и частично нижней. Для определения двух реакций, возникающих в заделках, можно использовать только одно уравнение равновесия: равенство нулю суммы проекций всех сил на вертикальную ось. Остальные два уравнения равновесия обращаются в тождества.

Поскольку неизвестных — два, а уравнение равновесия — одно, то потребуется составить одно рис 4 дополнительное уравнение, рассматривая деформации стержня или перемещения его сечений. Такие системы называются системами один раз (однажды) статически неопределимыми.

Системы, требующие составления двух уравнений перемещений, называются дважды статически неопределимыми и т. д.

Для решения рассматриваемой задачи поступим следующим образом.

Отбросим одну заделку, например нижнюю, заменив ее действие на стержень неизвестной реакцией.

В полученной таким образом системе (обычно ее называют основной системой) приравняем нулю перемещение нижнего сечения, так как в заданной системе это сечение заделано и перемещаться не может.

От действия силы Rbсечение В будет перемещаться вверх в результате укорочения всего стержня, а от действия силы Р — вниз в результате удлинения верхней части стержня длиной 1Ъ так как сила Р при отброшенной нижней заделке передается на верхнюю заделку только через эту часть стержня.

Для определения деформаций используем закон Гука. Так как площадь сечения стержня разная на различных участках, то деформацию определяем по частям.

Уравнение перемещений имеет вид

Первые три члена представляют собой перемещение вверх сечения В под действием силы RB, четвертый член — перемещение вниз сечения В от действия силы Р. Из этого уравнения находим RB, после чего определение продольных сил в сечениях производится без затруднений по методу сечений, как показано в предыдущих параграфах.


Литература

1 Феодосьев В.И. Сопротивление материалов. 2002

2 Беляев Н.М. Сопротивление материалов. 1999

3 Красковский Е.Я., Дружинин Ю.А., Филатова Е.М. Расчет и конструирование механизмов приборов и вычислительных систем. 1991

4 Работнов Ю.Н. Механика деформируемого твердого тела. 2004

5 Степин П.А. Сопротивление материалов. 1990


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 096 оценок star star star star star
среднее 4.9 из 5
им. С.Ю.Витте
Работа выполнена досрочно, содержание по существу, маленький недочет был исправлен. Спасибо!
star star star star star
БПТ
Обращался к Елене Александровне второй раз Всё очень здорово и оперативно сделанно, без за...
star star star star star
"КрасГАУ"
Заказываю в первый раз у Евгения , и остался максимально доволен , всё чётко !)
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Выполнить контрольную работу по Теоретической механике. М-08023

Контрольная, Теоретическая механика

Срок сдачи к 30 дек.

только что

Практическое задание

Другое, Организация рекламной и PR-деятельности

Срок сдачи к 2 янв.

1 минуту назад

Лабораторная

Лабораторная, технология конструкционных материалов

Срок сдачи к 1 янв.

3 минуты назад

Тестирование по психологии

Тест дистанционно, Психология и педагогика

Срок сдачи к 31 дек.

3 минуты назад

создание ролика

Другое, Право

Срок сдачи к 25 дек.

4 минуты назад

Контрольная, Логика

Контрольная, Логика

Срок сдачи к 27 дек.

4 минуты назад

1. решить файл перечень заданий exel

Решение задач, Информационные технологии

Срок сдачи к 28 дек.

4 минуты назад

Пересечение криволинейных поверхностей плоскостью треугольника АВС

Решение задач, Начертательная геометрия

Срок сдачи к 10 янв.

6 минут назад

Решить задачу

Решение задач, Теоретическая механика

Срок сдачи к 26 дек.

7 минут назад

выполнить задания

Решение задач, Актуальные проблемы права интеллектуального собственности

Срок сдачи к 28 янв.

8 минут назад

Химия

Презентация, Химия

Срок сдачи к 25 дек.

8 минут назад

Нужен визуалмейкер для моих фоток

Другое, Фотография

Срок сдачи к 18 февр.

9 минут назад

Органихзация рекламного агенства

Другое, Организация рекламной и PR-деятельности

Срок сдачи к 2 янв.

10 минут назад

Тема: имидж современного руководителя

Курсовая, менеджмент сфере культуры и искусства

Срок сдачи к 26 дек.

11 минут назад

Практика в уголовном розыске

Отчет по практике, Уголовный процесс

Срок сдачи к 26 дек.

11 минут назад

Нужно решить 30 тестов по экономике

Тест дистанционно, Экономика

Срок сдачи к 5 февр.

11 минут назад

президент рф

Реферат, Основы российской государственности

Срок сдачи к 25 дек.

11 минут назад

Практическая работа по дисциплине «Информационное обеспечение логистических процессов»

Другое, Операционная деятельность в логистике

Срок сдачи к 26 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно