Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Дифференциальные уравнения гиперболического типа

Тип Реферат
Предмет Математика
Просмотров
1651
Размер файла
107 б
Поделиться

Ознакомительный фрагмент работы:

Дифференциальные уравнения гиперболического типа

Курсовая работа студента гр. МТ-31 Нургалиев А.

Инновационный евразийский университет

Павлодар 2007 год.

1. Введение.

Многие задачи математической физике приводят к дифференциальным уравнениям с частными производными. В настоящей курсовой работе рассмотрены одни из основных уравнений гиперболического типа: 4-го и наиболее часто встречающегося 2-го порядка.

Рассмотрено простейшее уравнение гиперболического типа – волновое уравнение. К исследованию этого уравнения приводят рассмотрение процессов поперечных колебаний струны, продольных колебаний стержня, электрических колебаний в проводе, крутильных колебаний вала, колебаний газа и т. д. Приведена формула Даламбера для решения краевых задач, а также её физическая интерпретация.

Большое число задач о колебаниях стержней, пластин и т.д. приводит к уравнениям более высокого порядка. В качестве примера на уравнения 4-го порядка рассмотрена задача о собственных колебаниях камертона.

2. Метод распространяющихся волн.

2.1. Вывод уравнения колебаний струны.

В математической физике под струной понимают гибкую, упругую нить. Напряжения, возникающие в струне в любой момент времени направлены по касательной к ее профилю. Пусть струна длины l в начальный момент направлена по отрезку оси 0x от 0 до l. Предположим, что концы струны закреплены в точках x=0 и x=l. Если струну отклонить от ее первоначального положения, а потом предоставить самой себе или, не отклоняя струны, придать в начальный момент ее точкам некоторую скорость, или отклонить струну и придать ее точкам некоторую скорость, то точки струны будут совершать движения – говорят, струна начнет колебаться. Задача заключается в определении формы струны в любой момент времени и определении закона движения каждой точки струны в зависимости от времени.

Будем рассматривать малые отклонения точек струны от начального положения. В силу этого можно предполагать, что движение точек струны происходит перпендикулярно оси 0x и в одной плоскости. При этом предположении процесс колебания струны описывается одной функцией u(x,t) которая дает величину перемещения точки струны с абсциссой x в момент t.

Так как мы рассматриваем малые отклонения точек струны в плоскости (x,u), то будем предполагать, что длина элемента струны M1M2 равняется ее проекции на ось 0x, т.е. M1M2=x2-x1. Также будем предполагать, что натяжение во всех точках струны одинаковое; обозначим его через T.

Рассмотрим элемент струны MM’.

На концах этого элемента, по касательным к струне, действуют силы T. Пусть касательные образуют осью 0x углы и . Тогда проекция на ось 0u сил, действующих на элемент MM’, будет равна . Так как угол мал, то можно положить , и мы будем иметь:

(здесь мы применили теорему Лагранжа к выражению, стоящему в квадратных скобках).

Чтобы получить уравнение движения, нужно внешние силы, приложенные к элементу, приравнять силе инерции. Пусть масса элемента струны будет . Ускорение элемента равно . Следовательно, по принципу Даламбера будем иметь:

Сокращая на и обозначая , получаем уравнение движения

(1)

Это и есть волновое уравнение – уравнение колебания струны. Для полного определения движения струны одного уравнения (1) недостаточно. Искомая функция u(x,t) должна удовлетворять еще граничным условия, указывающим, что делается на концах струны (x=0 и x=l), и начальным условиям, описывающим состояние струны в начальный момент (t=0). Совокупность граничных и начальных условий называется краевыми условиями:

2.2. Формула Даламбера.

Изучение методов построения решений краевых задач для уравнений гиперболического типа начнем с задачи с начальными условиями для неограниченной струны:

(2)

(3)

Преобразуем это уравнение к каноническому виду, содержащему смешанную производную. Уравнение характеристик

распадается на два уравнения:

, ,

интегралами которых являются прямые

, .

Вводя новые переменные

, ,

уравнение колебания струны преобразуем к виду:

. (4)

Найдем общий интеграл последнего уравнения. Очевидно, для всякого решения уравнения (4)

,

где - некоторая функция только переменного . Интегрируя это равенство по при фиксированном , получим

, (5)

где и являются функциями только переменных и .Обратно, каковы бы ни были дважды дифференцируемые функции и , функция , определяемая формулой (5), представляет собой решение уравнения (4). Так как всякое решение уравнения (4)может быть представлено в виде (5) при соответствующем выборе и , то формула (5) является общим интегралом этого уравнения. Следовательно, функция

(6)

является общим интегралом уравнения (2).

Допустим, что решение рассматриваемой задачи существует; тогда оно дается формулой (6). Определим функции и таким образом, чтобы удовлетворялись начальные условия:

(7)

. (8)

Интегрируя второе равенство, получим:

где и C – постоянные. Из равенства

находим:

(9)

Таким образом, мы определили функции и через заданные функции и , причем равенства (9) должны иметь место для любого значения аргумента. Подставляя в (6) найденные значения и , получим:

или

, (10)

Формулу (10), называемую формулой Даламбера, мы получили, предполагая существование решения поставленной задачи. Эта формула доказывает единственность решения. В самом деле, если бы существовало второе решение задачи (2) – (3), то оно представлялось бы формулой (10) и совпадало бы с первым решением.

Нетрудно проверить, что формула (10) удовлетворяет (в предположении двукратной дифференцируемости функции и однократной дифференцируемости функции ) уравнению и начальным условиям. Таким образом, изложенный метод доказывает как единственность, так и существование решения поставленной задачи.

2.2.2.Физический интерпретация.

Функция , определяемая формулой (10), представляет собой процесс распространения начального отклонения и начальной скорости. Если фиксировать , то функция дает профиль струны в момент , фиксируя , получим функцию , дающую процесс движения точки . Предположим, что наблюдатель, находившийся в точке x=0 в момент t=0, движется со скоростью a в положительном направлении. Введем систему координат, связанную с наблюдателем, полагая , . В этой подвижной системе координат функция будет определятся формулой и наблюдатель все время будет видеть тот же профиль, что и в начальный момент. Следовательно, функция представляет неизменный профиль f(x), перемещающийся вправо (в положительном направлении оси x) со скоростью a (распространяющуюся или бегущую волну). Функция f(x+at) представляет, очевидно, волну, распространяющуюся налево (в отрицательном направлении оси x) со скоростью a. Таким образом, общее решение (10) задачи Коши для бесконечной струны есть суперпозиция двух волн , одна из которых распространяется направо со скоростью a, а вторая – налево с той же скоростью. При этом

,

где .

Для выяснения характера решения (10) удобно пользоваться плоскостью состояний (x,t) или «фазовой плоскостью». Прямые x-at=const и x+at=const являются характеристиками уравнения (2). Функция вдоль характеристики x-at=const сохраняет постоянное значение, функция постоянна вдоль характеристики x+at=const.

Предположим, что f(x) отлична от нуля только в интервале и равна нулю вне этого интервала. Проведем характеристики и через точки и ; они разбивают полуплоскость (x,t>0) на три области I, II, и III (рис. 3, а).

Функция отлична от нуля только в области II, где и характеристики и представляют передний и задний фронты распространяющейся направо волны.

Рассмотрим теперь некоторую фиксированную точку и приведем из нее обе характеристики и , которые пересекут ось x в точках , t=0 и , t=0. Значение функции в точке равно , т. е. определяется значениями функций и в точках и , являющихся вершинами треугольника MPQ (рис. 3, б), образованного двумя характеристиками и осью x. Этот треугольник называется характеристическим треугольником точки . Из формулы (10) видно, что отклонение точки струны в момент зависит только от значений начального отклонения в вершинах P(x0-at0,0) и Q(x0+at0,0) характеристического треугольника MPQ и от значений начальной скорости на стороне PQ. Это становится особенно ясным, если формулу (10) записать в виде

(11)

Начальные данные, заданные вне PQ, не оказывают влияния на значения в точке . Если начальные условия заданы не на всей бесконечной прямой, а на отрезке , то они однозначно определяют решение внутри характеристического треугольника, основанием которого является отрезок .

2.2.3. Пример.

Решение (10) можно представить в виде суммы , где

(12)

. (13)

Если начальная скорость равна нулю (), то отклонение есть сумма левой и правой бегущих волн, причем начальная форма обеих волн определяется функцией , равной половине начального отклонения. Если же , то представляет возмущение струны, создаваемое начальной скоростью.

Рассмотрим распространение начального отклонения, заданного в виде равнобедренного треугольника. Такой начальный профиль можно получить, если оттянуть струну в середине отрезка . На рис. 4 даны последовательные положения струны через промежутки времени .

Наглядное представление о характере процесса распространения можно получить с помощью фазовой плоскости (x, t). Проведем характеристики через точки и ; они разобьют полуплоскость на шесть областей (рис. 5).

Отклонение в любой точке (x,t) дается формулой (12). Поэтому в областях I, III, V отклонение равно нулю, так как характеристический треугольник любой точки из этих областей не имеет общих точек с отрезком , на котором заданы начальные условия. В области II решением является «правая волна» , в области IV – «левая волна» , а в области VI решение есть сумма «левой» и «правой» волн.

3. О колебании стержней.

В курсах методов математической физики основное место отводится уравнениям второго порядка. Однако большое число задач о колебаниях стержней, пластин и т.д. приводит к уравнениям более высокого порядка.

В качестве примера на уравнения 4-го порядка рассмотрим задачу о собственных колебаниях камертона, эквивалентную задаче о колебаниях тонкого прямоугольного стержня, зажатого одним концом в массивные тиски. Определение формы колебаний камертона и его частоты сводится к решению «уравнения поперечных колебаний стержня»

(1)

К этому уравнению приходят во многих задачах о колебании стержней, при расчете устойчивости вращающихся валов, а также при изучении вибрации кораблей.

Приведем элементарный вывод уравнения (1). Рассмотрим прямоуголный стержень длиной , высотой h и шириной b. Выделим элемент длины dx. После изгиба торцевые сечения выделенного элемента стержня, предполагаемые плоскими, образуют угол , Если деформации малы, а длина оси стержня при изгибе не меняется (dl=dx), то

.

Слой материала, отстоящий от оси стержня y=0 на расстоянии , изменяет свою длину на величину . По закону Гука сила натяжения, действующая вдоль слоя, равна

,

где E – модуль упругости материала стержня. Полный изгибающий момент сил, действующих на сечение x, равен

, (2)

где

- момент инерции прямоугольного сечения относительно своей горизонтальной оси. Обозначим через M(x) момент, действующих на правую часть стержня в каждом сечении. В сечении x+dx, очевидно, действует момент сил, равный –(M+dM).

Избыточный момент –dM уравновешивается моментом тангенциальных сил

.

Отсюда в силу равенства (2) получаем величину тангенциальной силы

. (3)

Приравняв действующую на элемент результирующую силу

произведению массы элемента на ускорение

,

где - плотность стержня, S – площадь поперечного сечения (при этом мы пренебрегаем вращательным движением при изгибе), получаем уравнение поперечных колебаний стержня

(). (1)

Граничными условиями для заделанного конца x=0 являются неподвижность стержня и горизонтальность касательной

, . (4)

На свободном конце должны равняться нулю изгибающий момент (2) и тангенциальная сила (3), откуда следует, что

, . (5)

Для того чтобы полностью определить движения стержня, нужно еще задать начальные условия – начальное отклонение и начальную скорость

, (). (6)

Таким образом, задача сводится к решению уравнения (1) с граничными условиями (4), (5) и с начальными условиями (6).

Будем решать задачу методом разделения переменных, полагая

y=Y(x)T(t). (7)

Подставляя предлагаемую форму решения в (1), имеем:

.

Для функции Y(x) получаем задачу о собственных значениях

, (8)

, , , . (9)

Общее решение уравнения (8) представляется в виде

.

Из условий Y(0)=0, Y’(0)=0 находим C=-A, D=-B. Отсюда следует, что

.

Условия Y’’(l)=0 и Y’’’(l)=0 дают:

Эта однородная система имеет нетривиальные решения A и B, если определитель системы равен нулю. Приравнивая этот определитель нулю, получаем трансцендентное уравнение для вычисления собственных значений

.

Так как , то это уравнение можно записать в идее

(). (10)

Корни уравнения (10) без труда вычисляются, например, графически

Последняя формула дает значение с точностью до трех десятичных знаков, начиная с n=3, и с точностью до шестого знака для .

Рассмотрим теперь частоты колебаний камертона. Уравнению

Удовлетворяют тригонометрические функции

с частотой

,

Частоты собственных колебаний относятся как квадраты . Так как

,

То второй собственный тон выше основного тона более чем на две с половиной октавы, т.е. выше шестой гармоники струны при равном основном тоне, третье же собственное колебание выше основного тона более чем на четыре октавы. Например, если камертон имеет основную частоту в 440 колебаний в секунду (принятый стандарт a’ – ноты ля первой октавы), то следующая собственная частота камертона будет 2757,5 колебания в секунду (между c’’’’ =2637,3 и f’’’’=2794,0 – между нотами ми и фа четвертой октавы равномерно-темперированной гаммы), третья же собственная частота в 7721,1 колебания в секунду уже выходит за пределы шкалы собственно музыкальных звуков.

При возбуждении колебаний камертона ударом присутствует не только первая, но и высшие гармоники, чем и объясняется металлический звук в начальный момент. Однако с течением времени высшие гармоники быстро затухают и камертон издает чистый звук основного тона.

4. Заключение.

Дифференциальные уравнения с частными производными широко применяются в математической физике. В качестве примера в данной работе рассмотрены два уравнения.

Волновое уравнение с краевыми условиями можно свести к решению формулы Даламбера, задающуюся начальными условиями. И с помощью фазовой плоскости можно отследить характер его решения.

В процессе решения «уравнения поперечных колебаний стержня» получаем задачу о собственных значениях и задачу о нахождение частот собственных колебаний. Причем частоты собственных колебаний относятся как квадраты собственных значений.

Список литературы

А. Н. Тихонов, А. А. Самарский «Уравнения математической физики», Москва, 1966 г.

Н. С. Пискунов «Дифференциальное и интегральное исчисление», Москва, 1970 г.

Н. С. Кошляков, Э. Б. Глинер, М. М. Смирнов «Уравнения в честных производных математической физики», Москва, 1970 г.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно