Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Применение свойств функций для решения уравнений

Тип Реферат
Предмет Математика
Просмотров
1194
Размер файла
65 б
Поделиться

Ознакомительный фрагмент работы:

Применение свойств функций для решения уравнений

Применение свойств функций для решения уравнений

Т.С. Кармакова, доцент кафедры алгебры ХГПУ

В предлагаемой статье речь идет о нестандартных приемах решения уравнений, основанных на простых и хорошо известных учащимся свойствах и характеристиках функций, таких как непрерывность, монотонность наибольшее и наименьшее значение. Используя предлагаемые автором задачи и методы их решения, учитель сможет сформировать у учащихся более широкий взгляд на область применения различных этих свойств. Ведь не секрет, что в стандартном курсе школьной математики свойства функций применяются в основном для построения их графиков.

В соответствии с обязательным минимумом содержания среднего (полного) общего образования, утвержденным Министерством образования РФ (пр. №56 от 30.06.99), все учащиеся должны знать три основных метода решения уравнений:

Разложение на множители,

Замена переменных,

Использование свойств функций.

Рассмотрим на конкретных примерах сущность третьего метода. Этот метод применяется тогда, когда уравнение F(x)=G(x) в результате преобразований или замены переменных не может быть приведено к тому или иному стандартному уравнению, имеющему определенный алгоритм решения. Продемонстрируем использование некоторых свойств функций к решению уравнений указанного выше вида в случае, когда F(x) и G(x) - любые элементарные функции.

Использование области определения и области значения функций

Решить уравнение

Решение: Множество решений этого уравнения совпадает с областью определения функции . Областью определения этой функции (в соответствии с определением степени с рациональным показателем) является множество положительных действительных чисел.

Ответ: x>0.

Решить уравнение sinxctgx=cosx.

Решение: Множество решений этого уравнения совпадает с областью определения уравнения. Область определения уравнения – это общая часть областей определения функций, входящих в уравнение. Следовательно, множество решений уравнения – множество всех действительных чисел, кроме x=kp, где kÎZ.

Ответ: x¹kp, где kÎZ.

Решить уравнение .

Решение: У этого уравнения нет корней, так как область значений функции при x³1 есть множество неотрицательных чисел, а функция при всех x принимает отрицательные значения.

Решить уравнения:

а)

б)

в)

г)

д)

е)

Ответы: а) x>0, x¹1; б) êxê£1; в) x¹0; г) x³0; д) Нет корней; е) x¹0.

Использование экстремальных значений функций

Сущность этого способа решения уравнений в том, что оцениваются правая и левая части уравнения F(x)=G(x) и, если одна из функций принимает значение не меньше некоторого числа А, а другая – не больше этого же числа А, то данное уравнение заменяется системой уравнений:

Этот способ может быть применен к решению следующих уравнений:

в обеих частях уравнения стоят функции разного вида;

в одной части уравнения функция, ограниченная сверху, а в другой – ограниченная снизу;

в одной части уравнения стоит функция, ограниченная сверху или снизу, а в другой – конкретное число.

Рассмотрим конкретные примеры.

2.1 Решить уравнение

Решение: Оценим правую и левую части уравнения:

а) , так как , а ;

б) , так как .

Оценка частей уравнения показывает, что левая часть не меньше, а правая не больше двух при любых допустимых значениях переменной x. Следовательно, данное уравнение равносильно системе

Первое уравнение системы имеет только один корень х=-2. Подставляя это значение во второе уравнение получаем верное числовое равенство:

Ответ: х=-2.

2.2 Решить уравнение

Решение: левая часть уравнения не больше двух, а правая – не меньше двух, следовательно, данное уравнение равносильно системе:

Второе уравнение в этой системе имеет единственный корень х=0. Подставляя найденное значение х в первое уравнение, получаем верное числовое равенство.

Ответ: х=0.

2.3 Решить уравнение

Решение: Оценим левую часть уравнения: , следовательно, . Получили, что в данном уравнении левая часть не больше восьми, а правая часть равна девяти при всех действительных значениях переменной х, поэтому данное уравнение не имеет корней.

Ответ: нет корней.

2.4 Решить уравнения:

а)

б)

в)

г)

д)

е)

Ответы: а) p; б) 0; в) 0; г) 0.5; д) 1; е) нет корней.

Использование монотонности функций

Этот способ основан на следующих теоретических фактах:

Если одна функция возрастает, а другая убывает на одном и том же промежутке, то графики их либо только один раз пересекутся, либо вообще не пересекутся, а это означает, что уравнение F(x)=G(x) имеет единственное решение, либо вообще не имеет решений;

Если на некотором промежутке одна из функций убывает (возрастает), а другая принимает постоянные значения, то уравнение F(x)=G(x) либо имеет единственный корень, либо не имеет корней.

Сущность этого способа состоит в том, исследуются на монотонность левая и правая части уравнения и, если оказывается, что функции удовлетворяют какому - либо из приведенных условий, то найденное подбором решение будет единственным корнем уравнения.

Этот способ можно использовать для решения следующих типов уравнений:

уравнения, в обеих частях которых стоят функции разного вида;

уравнения, в одной части которых убывающая, а в другой – возрастающая на данном промежутке функции;

уравнения, одна часть которых – возрастающая или убывающая функция, а вторая – число.

Рассмотрим примеры.

3.1 Решить уравнение

Решение: область определения данного уравнения x>0. Исследуем на монотонность функции . Первая из них –убывающая (так как это - логарифмическая функция с основанием больше нуля, но меньше единицы), а вторая – возрастающая (это линейная функция с положительным коэффициентом при х). Подбором легко находится корень уравнения х=3, который является единственным решением данного уравнения.

Ответ: х=3.

3.2 Решить уравнение

Решение: Данному уравнению удовлетворяет число х=2. Проверим, удовлетворяют ли функции, образующие уравнение, условиям, при которых можно утверждать, что других корней нет. Сначала рассмотрим . Исследуем ее на монотонность с помощью производной: . Решаем биквадратное уравнение

,

,

поэтому при всех значениях хÎR., следовательно, функция f(x)- возрастающая.

Теперь исследуем функцию . Как легко установить, она убывает при всех значениях хÎR. Из проведенного исследования можно сделать вывод, что х=2 – единственный корень данного уравнения.

Ответ: х=2

3.3 Решить уравнение

Решение: Легко проверить, что х=1 – корень данного уравнения, но мы пока не можем утверждать, что других корней нет, так как и левая и правя части уравнения – возрастающие функции. Преобразуем данное уравнение к виду . Функция в левой части – сумма двух убывающих функций, а следовательно, она также убывающая. В правой же части стоит постоянная функция. Таким образом, рассматриваемое уравнение может иметь только один корень.

Ответ: х=1

3.4 Решить уравнения:

а) 2x3+9x2+150x-161=0

б) 13x+7x=2

в) 2x+5x=2-tgx

г)

д)

е) x+2=76-x

Ответы: а) х=1; б) х=0; в) х=0; г) х=2; д) х=4; е) х=5.

В конце приведем список литературы, по которому читатели смогут самостоятельно изучить, как использовать различные свойства функций при решении уравнений.

Список литературы

Аксенов А.А. Решение задач методом оценки.//Математика в школе, 1999, №3, с. 30

Дорофеев Г.В., Потапов М.К., Розов Н.Х. Пособие по математике для поступающих в Вузы. М.: Наука, 1976

Литвиненко В.Н., Мордкович А.Г. Практикум по элементарной математике: алгебра, тригонометрия. М.: Просвещение, 1991

Шарыгин И.М., Голубев В.И. Решение задач: Учебное пособие для 11 классов общеобразовательных учреждений. – М.: Просвещение, 1995


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 368 оценок star star star star star
среднее 4.9 из 5
ДВГУПС
очень ответственно подошел к работе! Надеюсь на дальнейшее сотрудничество
star star star star star
Технический нефтегазовый институт
Спасибо Оксане, очень быстрое и качественное исполнение работы. Защита прошла на отлично. ...
star star star star star
ГУЗ
Спасибо Большое! Реферат был написан в короткие сроки и очень доступным языком
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Исследуйте на сходимость числовой знакоположительный ряд

Решение задач, Математика

Срок сдачи к 20 янв.

только что

4 задания

Контрольная, Статистика

Срок сдачи к 18 янв.

только что

Выполнить курсовой. Финансы организаций. Р-00271

Курсовая, Экономика

Срок сдачи к 22 янв.

только что

Английский

Решение задач, Английский

Срок сдачи к 15 янв.

1 минуту назад

В данный момент требуется узнать стоимость

Курсовая, Бухгалтерский учет

Срок сдачи к 1 апр.

1 минуту назад

Решить 2 задачи и ответить на вопросы.

Решение задач, Электротехника

Срок сдачи к 17 янв.

2 минуты назад

Выполнить курсовой. Финансы организаций. Р-00271

Курсовая, Финансы

Срок сдачи к 22 янв.

2 минуты назад

8 заданий под вариантами 7,17,27,37,47,57,67,77

Контрольная, Математика

Срок сдачи к 14 янв.

2 минуты назад

Тема в задании нужно сделать курсовую по организации пар Севастополь...

Курсовая, Бухгалтерская и налоговая отчетность

Срок сдачи к 15 янв.

2 минуты назад

Выполнить Индивидуальный проект, Обществознание

Контрольная, Обществознание

Срок сдачи к 18 янв.

4 минуты назад

Сделать 3 призентации

Презентация, SMM в спорте

Срок сдачи к 18 янв.

4 минуты назад

сравнительный анализ мер валютного контроля

Презентация, Таможенное дело

Срок сдачи к 15 янв.

4 минуты назад

Тесты,Экзамены

Другое, Все

Срок сдачи к 19 янв.

5 минут назад

Решить контрольную

Контрольная, Биология

Срок сдачи к 30 янв.

5 минут назад

Технологическая (проектно-технологическая) практика

Отчет по практике, Педагогическое образование

Срок сдачи к 16 февр.

6 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно