Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Цепные дроби вокруг нас

Тип Реферат
Предмет Математика
Просмотров
1622
Размер файла
58 б
Поделиться

Ознакомительный фрагмент работы:

Цепные дроби вокруг нас

А. Устинов

Всякое рациональное число p/q можно представить в виде конечной цепной дроби

p

= a0 +

1

= [a0; a1, …, an].

q

a1 + …

+

1

an

Числа, входящие в цепную дробь, называются неполными частными, из них a1, …, an — натуральные, a0 — целое. Иррациональные числа разлагаются в бесконечные цепные дроби.

Обрывая цепную дробь, можно получать очень хорошие рациональные приближения к данному числу, которые называются подходящими дробями (нумерация подходящих дробей, как и неполных частных, начинается с нуля). Для числа

π = [3; 7, 15, 1, 292, 1, …]

с древних времён известны приближения

22

7

= [3; 7] и

355

113

= [3; 7, 15, 1].

При этом

π –

22

7

< 1, 3 · 10–3,

π –

355

113

< 2, 7 · 10–7.

Квадратичные иррациональности (иррациональные корни квадратных уравнений с целыми коэффициентами), и только они, раскладываются в периодические цепные дроби. Например (черта отмечает период),

√5 = [2; 4, 4, 4, …] = [2; 4],

√13 = [3;

1, 1, 1, 1, 6

],

Если, разорвав прямоугольный лист бумаги пополам, мы хотим получить два новых листа с тем же отношением сторон, то стороны исходного листа должны относиться друг к другу как √2 : 1. Именно таким свойством обладают форматы бумаги серии A (A0, A1, …). Размеры стандартного листа бумаги A4 — 210×297 мм. Их отношение

297

210

=

99

70

= [1; 2, 2, 2, 2, 2]

есть пятая подходящая дробь к числу √2 = [1; 2]. Разница между ними на глаз не заметна:

√2 –

297

210

< 7, 3 · 10–5.

Произведение сторон листа (в метрах) мало отличается от 1/16:

0, 297 · 0, 210 –

1

16

= 1, 3 · 10–4.

Это связано с тем, что лист A4 составляет 1/24 = 1/16 от ватманского листа A0, площадь которого равна 1 м2.

Отношение напряжений в трёхфазных электрических сетях

380

220

=

19

11

= [1; 1, 2, 1, 2],

220

127

= [1; 1, 2, 1, 2, 1, 3, 2]

— это хорошие приближения к числу

√3 = [1; 1, 2, 1, 2, …] = [1;

1, 2

].

Подходящие дроби к длине солнечного года, измеренного в солнечных сутках, —

365, 24219… = [365; 4, 7, 1, 3, 5, …]

— позволяют строить календарные стили.

Первая подходящая дробь 365 1/4 соответствует юлианскому стилю, в котором каждый четвёртый год — високосный. В средние века от него отказались, поскольку он даёт заметную ошибку: 11 минут 14 секунд в год.

Третья подходящая дробь [365; 4, 7, 1] = 365 8/33 лежала в основе персидского календаря, который в 1079 году предложил математик, астроном и поэт Омар Хайям. Такой календарь за год ошибается на 19 секунд. В нём все годы разбиты на 33-летние циклы, внутри цикла семь раз високосным считается каждый четвёртый год, а на восьмой раз — пятый.

Календарь, основанный на следующем (четвёртом) приближении [365; 4, 7, 1, 3] = 365 31/128 предлагался астрономом Иоганном Генрихом Медлером в 1864 году. Он не был принят, хотя за год давал бы ошибку всего в одну секунду.

Мы живём по григорианскому стилю, использующему приближение 365 97/400. . Этот календарь ошибается примерно на 27 секунд в год.

Голландский учёный Христиан Гюйгенс в 1862 году построил один из первых механических планетариев. Теорию цепных дробей он применил при проектировании зубчатых колёс, что обеспечило высокую точность во взаимном движении моделей планет.

В ботанике известно явление филлотаксиса — спиралевидного расположения листьев, колючек, чешуек, семян, … Если посчитать количество спиралей, закручивающихся в одну и в другую стороны, то, как правило, получатся два соседних числа Фибоначчи, т.е. числа из последовательности

{Fn} = {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …},

в которой

F0 = 0, F1 = 1, Fn+1 = Fn + Fn–1 (n ≥ 1).

Так, на сосновой шишке есть 3 спирали, закручивающиеся в одну сторону, и 5 — в другую. На еловой — 5 и 8 спиралей соответственно, на кедровой — 8 и 13. Отношения соседних чисел Фибоначчи раскладываются в очень простые цепные дроби, например,

5

3

= [1; 1, 1, 1],

8

5

= [1; 1, 1, 1, 1].

Это подходящие дроби к числу, называемому золотым сечением:

1 + √5

= 1 +

1

= [1].

2

1 + …

+

1

1 + …

Расположение листьев по таким спиралям позволяет растениям получать наибольшее количество солнечных лучей.

На рисунках 1 и 2 изображён «чертёж» сосновой шишки.

Рис.1.

Рис.2.

Представьте, что эти квадраты вырезаны из бумаги и склеены в цилиндры (левая сторона склеена с правой, а заштрихованные квадраты одного цвета наклеены друг на друга). Тогда повёрнутые квадраты будут располагаться на цилиндре так же, как располагаются чешуйки на сосновой шишке. На рисунке 1 видно 3 спирали, закрученные в одну сторону, а на рисунке 2 — 5 спиралей, закрученных в другую. Попробуйте нарисовать «чертёж» еловой шишки с 5 и 8 спиралями. Воспользуйтесь для этого миллиметровой бумагой, вам понадобится квадрат 89×89.

Со времён Баха в музыке используется равномерно темперированная шкала, содержащая 12 полутонов в каждой октаве. Если струна длины l (при заданном натяжении) издаёт звук «до» первой октавы, соответствующий частоте f, равной 512 колебаниям в секунду, то струна длиной 2/3l (на струнных инструментах эта длина получается нажатием пальца в соответствующем месте) издаёт звук, имеющий частоту 3/2f (натуральная квинта), а струна длиной 1/2l издаёт звук, имеющий частоту 2f (октава). Наше ухо при сравнении двух звуков улавливает не отношение их частот, а логарифм этого отношения. Естественней всего брать двоичный логарифм, чтобы интервал в одну октаву измерялся как единица:

log2

2f

f

= 1.

Почему же возникло деление октавы именно на 12 интервалов? Чтобы октава и натуральная квинта по возможности более точно укладывались в одну и ту же равномерную темперацию (деление октавы на равные по слуху интервалы), октаву нужно поделить на столько частей, чтобы число log2 (3/2) хорошо приближалось дробью с выбранным знаменателем. Подходящими дробями к числу

log2

3

2

= [0; 1, 1, 2, 2, 3, 1, …]

будут дроби

1

1

,

1

2

,

3

5

,

7

12

, …

Приближения 1 и 1/2 слишком грубые. Приближение 3/5 соответствует пентатонике, существовавшей у народов Востока, а приближение 7/12 — самое удачное. Погрешность

log2

3

2

7

12

< 1, 7 · 10–3

на слух неразличима.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 368 оценок star star star star star
среднее 4.9 из 5
ФГБО ВО БрГУ
Анна, большая молодец, заказ выполнен досрочно и без замечаний, рекомендую
star star star star star
РГЭУ РИНХ
Очень хороший реферат, было все подробно описано. в общем то что надо! спасибо)
star star star star star
РТА СПБ
Огромное спасибо за качественно выполненную работу и оформленную в соответствии с требован...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Выполнить контрольную по Английскому. С-07505

Контрольная, Английский язык

Срок сдачи к 17 янв.

только что

Тема: Воспитание дружеских взаимодействий дошкольников

Курсовая, Педагогика

Срок сдачи к 16 янв.

1 минуту назад

Выполнение 6 работ в программе Statistica

Контрольная, Программные статистические комплексы

Срок сдачи к 20 февр.

1 минуту назад

Решить 3 задачи.

Решение задач, Физика

Срок сдачи к 22 янв.

1 минуту назад
1 минуту назад

Контрольная под дисциплине Механика жидкости и газа

Контрольная, Механика жидкости и газа

Срок сдачи к 20 янв.

1 минуту назад

Производственная практика

Отчет по практике, Психология и педагогика

Срок сдачи к 18 янв.

2 минуты назад
2 минуты назад

Выполнить контрольную по Английскому. С-07504

Контрольная, Английский язык

Срок сдачи к 17 янв.

2 минуты назад

Решить задачи

Решение задач, Международное право

Срок сдачи к 16 янв.

2 минуты назад

Написать отзыв по статье на 1,5-2 листа

Другое, Дефектология

Срок сдачи к 18 янв.

3 минуты назад

Контрольная работа "Расчёт теплопритоков в охлаждаемую камеру"

Контрольная, Теплотехника и хладотехника

Срок сдачи к 19 янв.

4 минуты назад

3 задачи

Решение задач, Теоретическая механика

Срок сдачи к 18 янв.

4 минуты назад

Теплофизика

Решение задач, Теплофизика

Срок сдачи к 15 янв.

5 минут назад

Лабораторная работа № 1.1 Модуль: Основы логического мышления

Решение задач, Введение в специальность, логика

Срок сдачи к 15 янв.

5 минут назад

Том каулитц

Контрольная, Математика

Срок сдачи к 18 янв.

6 минут назад

сделать лабораторные работы

Лабораторная, Цифровая культура в профессиональной деятельности, культурология

Срок сдачи к 25 янв.

6 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно