Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Решение задач в системе MathCad

Тип Реферат
Предмет Математика
Просмотров
1590
Размер файла
158 б
Поделиться

Ознакомительный фрагмент работы:

Решение задач в системе MathCad

ЗАДАЧА № 1

1.1 Найти значения коэффициента регрессии (b) и сводного члена уравнения регрессии (а)

1.2 Определить стандартную ошибку предсказания являющейся мерой качества реальной зависимости величинами Yи х с помощью уравнения линейной регрессии.

1.3 Проверить значимость коэффициента регрессии при р=0,05

1.4 Определить выборочный коэффициент Браве-Пирсона. Проверить гипотезу о значимости выборочного коэффициента корреляции при уровне значимости р=0,05.

X12345678910
Y8.01312.93319.8520.50328.22824.74133.10532.0432.91436.473

Линейная регрессия

Простая линейная регрессия позволяет найти линейную зависимость между одной входной и одной выходной переменными. Для этого определяется уравнение регрессии – это модель, отражающая зависимость значений Y, зависимой величины Y от значений х, независимой переменной х и генеральной совокупности, описывается уровнением:

где А0 – свободный член уравнения регрессии;

А1 – коэффициент уравнения регрессии

Затем строится соответствующая прямая, называемая линией регрессии. Коэффициенты А0 и А1, называемые также параметрами модели, выбираются таким образом, чтобы сумма квадратов отклонений точек, соответствующих реальным наблюдениям данных, от линии регрессии, была бы минимальной. Подбор коэффициентов производится по методу наименьших квадратов. Иными словами, простая линейная регрессия описывает линейную модель, которая наилучшим образом аппроксимирует зависимость между одной входной и одной выходной переменными.

Цели регрессионного анализа

· Определение наличия и характера (математического уравнения, описывающего зависимость) связи между переменными

· Определение степени детерминированности вариации критеральной переменной предикторами

· Предсказать значение зависимой переменной с помощью независимой

· Определить вклад независимых переменных в вариацию зависимой

1.1 Найдем значения коэффициента регрессии (А) и сводного члена уравнения регрессии (А)

a) Представление исходной информации в виде векторов


b) Определение суммы элементов векторов и произведений векторов:

c) Определение параметров уравнения регрессии



d) Свободный член уравнения регрессии А

e) Коэффициент уравнения регрессии А

f) Графическое изображение линии уравнения регрессии и точек кор-реляции

Определим параметры уравнения регрессии А и Ас помощью встроенных функций системы MathCad

· intercept (X,Y) - коэффициент А линейной регрессии;

· slope (X,Y) - коэффициент А линейной регрессии;

· corr(X,Y) - коэффициент корреляции

1) Определение свободного члена уравнения регрессии Ас помощью встроенной функции intercept(X.Y)

2) Определение коэффициента уравнения регрессии А с помощью встроенной функции slope(X.Y)

3) Определим коэффициент корреляции R с помощью встроенной функции corr(X,Y)

1.2 Определим стандартную ошибку предсказания являющейся мерой качества реальной зависимости величинами Yи х с помощью уравнения линейной регрессии.

Мерой качества приближенного описания реальной зависимости между величинами Yи х с помощью уравнения линейной регрессии является стандартное отклонение значений у от регрессионной прямой, вычисляемое по формуле:

SYXявляется мерой точности предсказания значений случайной величины Y по заданным значениям величины х, поэтому SYX называют также стандартной ошибкой предсказания.

Найдем стандартную ошибку предсказания для нашего примера:

1.3 Проверим значимость коэффициента регрессии при р=0,05

Если в результате проведенной проверки нет оснований сомневаться в адекватности линейной модели, то необходимо проверить гипотезу о том, что в действительности в генеральной совокупности отсутствует линейная регрессия, а то, что полученный коэффициент регрессии отличен от нуля объясняется только случайностью выборки.

Гипотеза Н0 проверяется с помощью стандартного t-критерия Стьюдента. Значение t-критерия определяется по формуле:



где А1 – абсолютная величина коэффициента регрессии,

SYX – стандартная ошибка предсказаний.

Если значения t>tp, то нулевая гипотеза отклоняется, и можно сделать вывод, что линейная регрессия значима на уровне значимости р. Зададимся уровнем значимости р=0,05. В противном случае гипотеза Н0 принимается

Оценим значимость коэффициента регрессии при уровне значимости р=0,05.

Подставим найденные ранее значения в формулу и определим значение t-критерия.

t0.05=2.306

Поскольку t>t0.05, то на уровне значимости 0,05 отклонением гипотезу Н0, т.е. коэффициент регрессии является статистически значимым.

1.4 Определим выборочный коэффициент Браве-Пирсона. Проверим гипотезу о значимости выборочного коэффициента корреляции при уровне значимости р=0,05.

Коэффициент корреляции Браве-Пирсона (RXY) — это параметри-ческий показатель, для вычисления которого сравнивают средние и стандартные отклонения результатов двух измерений.

где Xi, Yi- значения первой и второй выборок данных;

Xsr, Ysr - средние значения первой и второй выборок.

Проверим гипотезу о значимости выборочного коэффициента корреляции при уровне значимости р=0,05

Поскольку t>t0.05, то на уровне значимости 0,05 отклонением гипотезу Н0, т.е. коэффициент регрессии является статистически значимым.


ЗАДАЧА №2

При уровне значимости р=0,05 методом дисперсионного анализа проверить эффективность воздействия рентгеновского облучения на темп размножения определенного вида бактерий по данным, приведенным по таблице, где представлен относительный уровень (в процентах) размножения облученных бактерий к необлученным.

Номер испытанияДозы облучения F, 10 P
F1=1F2=2F3=3F4=4
1878377
2918576
397868277
492888479
5958081

В процессе медико-биологических исследований часто возникает потребность оценить влияние на какой-нибудь результативный признак одного или нескольких факторов.

Одним из современных статических методов, которые дают возможность проводить специальный анализ эффективности влияния многих факторов, является дисперсионный анализ. С помощью этого метода оценивают также вероятность влияния каждого из рассматриваемых факторов, их комбинации и общей совокупности. Важным преимуществом дисперсионного анализа является возможность определения вероятных расхождений в небольших группах экспериментальных данных, когда какой-нибудь другой метод может дать не определенный ответ. Это связано с тем, что в других методах проводится сравнение изолированных групп. Объединение отдельных групп в дисперсионный комплекс дает возможность четче выявить наличие расхождений, потому что при таком объединении выявлению расхождений каждой группы содействуют все другие группы комплекса.

Смысл дисперсионного анализа заключается в сопоставлении между собой показателей варьирования результативных признаков, которое служит причиной действия постоянных и случайных факторов. В зависимости от числа факторов, которые учитываются при дисперсионном анализе, статистические комплексы делятся на:

· однофакторный дисперсионный анализ с одинаковым числом испытаний на уровнях;

· однофакторный дисперсионный анализ с неодинаковым числом испытаний на уровнях;

· двухфакторный дисперсионный анализ

Ниже будет рассмотрен пример однофакторного дисперсионного анализа с неодинаковым числом испытаний на уровнях.

Неодинаковое число испытаний на уровнях.

Если число испытаний проведенных на различных уровнях действия фактора, различно, а именно: на уровне А1 проведено q1 испытаний, на уровне А2- q2 испытаний и т. д. на уровне Аi – qi испытаний, то факторную и остаточную дисперсии находят по следующим формулам:

Здесь

- общее количество результатов испытаний

- сумма значений величины Х на уровне Аj;

- сумма квадратов значений величины Х на уровне Аj

Определим величины:

Предполагая, что распределения значений, характеризующих эффективность рентгеновского облучения, при каждом испытании является нормальными, а соответствующие генеральные дисперсии равны, применим метод однофакторного дисперсионного анализа.

1) Найдем общее количество результатов испытаний:

2) Определим сумму значений величины х на уровне Аj:

3) Определим сумму квадратов значений величины х на уровне Аj

4) Теперь можно определить факторную и остаточную дисперсии по следующим формулам:

Поскольку следует проверить значимость различий между этими дисперсиями. Для этого вычисляем экспериментальное значение критерия

Так как это различие между факторной и остаточной дисперсиями является значимым (при уровне значимости р=0,05). В соответствии с методом дисперсионного анализа нулевую гипотезу о равенстве групповых средних следует отвергнуть, т. е. различия между групповыми средними значимы, что соответствует наличию существенного различий между эффективностью воздействия рентгеновского облучения на темп размножения бактерий.

Вывод: Можно утверждать, что рассматриваемый физический фактор оказывает существенное влияние на размножение бактерий.


ЗАДАЧА №3

Для заданной таблицы данных:

X12345678910
Y7.6286.1535.5195.6025.475.0125.0754.9644.9025.128

С помощью функции genfit – системы MathCadпровести нелинейную ре-гресссию общего вида для

f(x)=ax+b/x;

f1(x)=ax+bx+c;

f3(x)=a+ab

Под нелинейной регрессией общего вида подразумевается нахождение вектора Р параметров произвольной функции F (x, u1, u2, ..., un), при котором обеспечивается минимальная среднеквадратичная погрешность приближения “облака” исходных точек. Для проведения нелинейной регрессии общего вида используется функция genfit (X, Y, S, F1). Она возвращает вектор Р параметров функции F, дающий минимальную среднеквадратичную погрешность приближения функцией F(x, u1, u2, ..., un) исходных данных. F должен быть вектором с символьными элементами, причем они должны содержать аналитические выражения для исходной функции и ее производных по всем параметрам. Вектор S должен содержать начальные значения элементов вектора P, необходимые для решения системы нелинейных уравнений регрессии итерационным методом.

При решении этой задачи возникают две проблемы. Прежде всего, надо вычислить значения производных по переменным а и b. Это может быть cделано с помощью символьных операций, что наглядно показывает пользу от таких операций. Вторая проблема связана с необходимостью применения функции genfit в ее стандартном виде. Поэтому пришлось заменить параметр а на u1, а параметр b на u2 и т. д..

Пример использования метода в среде MathCad:

І СПОСОБ (Для функции -f1(x)=ax+bx+c )

1) Вводим результаты измерений величин X и Y:

2) Выбрав функцию приближения

где a, b - искомые коэффициенты регрессии,

3) найдем частные производные этой функции по коэффициентам регрессии:

по а:

по b:

по с:

1

4) Введем вектор, элементами которого являются функция приближения и её производные, переобозначив коэффициенты регрессии

u1=a,

u2=b,

u3=c:

вектор F1 должен быть вектором с символьными элементами, причем они должны содержать аналитические выражения для исходной функции и ее производных по всем параметрам.

4) Вводим вектор с начальными приближениями коэффициентов регрессии (вектор S должен содержать начальные значения элементов вектора u):

5) С помощью функции genfit(Х,Y,S,F1), найдем значения коэффициентов регрессии a, b,

гдеX и Y - векторы экспериментальных данных,

S - вектор с начальными приближениями коэффициентов регрессии,

F1 - вектор F1(x,u)

6) Подставляя найденные значения коэффициентов регрессии в первый элемент вектора F1(x,u), определите искомую функцию приближения экспериментальных данных (уравнение регрессии):

7) Построим линию регрессии и график экспериментальных данных:

ІІ СПОСОБ (Для этой же функции -f2(x)=ax+bx+c )

1) Найдем параметров a, bпо следующей системе нормальных уравнений:

2) Чтобы решить эту систему относительно параметров a, bи с, нужно предварительно рассчитать суммы:

3) Составим систему нормальных уравнений:

4) Решая эту систему относительно коэффициентов a, bи с, найдем их значение:

5) Отсюда эмпирическое уравнение параболы второго порядка таково:

6) Подставляя в это уравнение вместо х значения независимой переменной Х, можно рассчитать ожидаемые величины:

7) Эти величины хорошо согласуются с фактическими данными, это можно увидеть на (более плавно идущей) линии регрессии:

8) Найдем среднеквадратическое уравнение. СКО характеризует разброс любого результата из ряда наблюдений относительно среднего результата анализа:

Для функции f2(x)=ax+b/x;

1) Для функции приближения (с теми же результатами измерений величин X и Y)

где a, b - искомые коэффициенты регрессии,

2) Найдем частные производные этой функции по коэффициентам регрессии:

по а:

по b:

3) Найдем значения коэффициентов регрессии a, b:

4) Уравнение регрессии:

Для функции f3(x)=a+ab

1) Для функции приближения (с теми же результатами измерений величин X и Y)

где a, b - искомые коэффициенты регрессии,

2) Найдем частные производные этой функции по коэффициентам регрессии:

по а:

по b:

3) Найдем значения коэффициентов регрессии a, b:

4) Уравнение регрессии:


ЛИТЕРАТУРА

1. Основы математической статистики: Учебное пособие для by-тов физ. культ./ Под. ред В. С. Иванова. – М.: Физкультура и спорт, 1990. – 176., ил.

2. Лакин Г. Ф. Биометрия: Учеб. пособие для биол спец. вузов – 4-е изд., перераб. и доп. – М.: Высш. шк., 1990. – 352 с., ил.

3. Кирьянов Д. В.Самоучитель Mathcad И. - СПб.: БХВ-Петербург, 2003. - 560 с: ил.

4. Гурский Д. А., Турбина Е. С. Вычисления в Mathcad 12. — СПб.: Питер, 2006. — 544 с: ил.

5. Алексеев Е. Р., Чеснокова О. В. Решение задач вычислительной математики в пакетах Mathcad 12, МАТLАВ 7, Мар1е 9/Алексеев Е. Р., Чеснокова О. В. - М. : НТ Пресс, 2006. - 496 с. : ил. - (Самоучитель).

6. Макаров Е. Г. Инженерные расчеты в Mathcad . Учебный курс. – Спб.; Питер, 2005. – 448 с.: ил.

7. http://www.exponenta.ru/educat/systemat/kazah/matecon/2_5.asp Лабораторные работы по курсам "Математика для экономистов" и "Экономико-математические методы и моделирование" в системе MathCAD Р.М. Оспанов

8. http://www.statsoft.ru/HOME/TEXTBOOK/modules/stmulreg.html

9. http://iskunstvo.narod.ru/edu/inf/regr.htm

10. http://edu.nstu.ru/courses/enc/control_quality/full/XX42.htm


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно