Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Метод наближеного обчислення коренів Програма

Тип Реферат
Предмет Математика
Просмотров
1590
Размер файла
123 б
Поделиться

Ознакомительный фрагмент работы:

Метод наближеного обчислення коренів Програма

Міністерство освіти і науки України

ФАКУЛЬТЕТ ІНФОРМАТИКИ

КАФЕДРА ІНФОРМАЦІЙНИХ УПРАВЛЯЮЧИХ СИСТЕМ ТА ТЕХНОЛОГІЙ

Реєстраційний №________

Дата ___________________

КУРСОВА РОБОТА

Тема:

Метод наближеного обчислення коренів. Програма.

Рекомендована до захисту

“____” __________ 2008р.

Робота захищена

“____” __________ 2008р.

з оцінкою

_____________________

Підписи членів комісії


Зміст

Вступ

Теоретична частина

1. Межі дійсних коренів

2. Число дійсних коренів

Практична частина

1. Опис програми

2. Текст програми

Контрольні приклади

Висновок

Література

Вступ

Не існує методу для пошуку точних значень многочленів з числовими коефіцієнтами. Адже, деякі проблеми механіки, фізики і інших галузей техніки зводиться до питання про корені многочленів, іноді досить високим степенем. Ця обставина з’явилася приводом для численних досліджень, що мали метою навчитися робити ті чи інші висловлення про корені многочлена з числовими коефіцієнтами, не знаючи цих коренів. Для многочленів з дійсними коефіцієнтами розроблялися методи визначення числа їхніх дійсних коренів, шукалися границі, між якими ці корені можуть знаходитися. Нарешті, багато досліджень було присвячено методам наближеного обчислення коренів: у технічних додатках звичайно досить знати лише наближені значення коренів з деякою заздалегідь точністю і якби, наприклад, корені многочлена записувалися в раидикалах, ці радикали все рівно були б замінені їх наближеними значеннями.


Теоретична частина

1. Межі дійсних коренів

Щоб знайти корені рівняння з достатнім степенем точності, треба знати, як ці корені розміщені на комплексній площині або на дійсній осі. Заважимо, що іноді навіть немає потреби знаходити числові значення коренів, а досить лише з‘ясувати їх розміщення на площині (число дійсних, зокрема, додатних від‘ємних коренів тощо). Наприклад, одна з важливих проблем механіки – теорія стійкості – потребує з‘ясування умов, при яких усі корені даного алгебраїчного рівняння мають від‘ємні дійсні частини.

Зробимо два зауваження щодо комплексних коренів многочленів.

Зауваження 1. Усі корені многочлена лежать у середині круга з центром у точці 0 і радіусом

(1)

Зауваження 2. Комплексні корені многочлена з дійсними коефіцієнтами розміщені симетрично відносно дійсної осі.

Переходячи тепер до розгляду дійсних коренів многочленів з дійсними коефіцієнтами, будемо знову позначати змінне буквою x, а не z.

З наведеного зауваження 1 дістаємо таке твердження:

Теорема. Усі дійсні корені рівняння міститься в інтервалі , де

, .

Справді, всі комплексні корені лежать у крузі , а тому, якщо серед них є дійсні корені, то вони повинні потрапити в зазначений інтервал.

Теорему 1 часто називають теоремою про межі коренів рівняння. Є чимало способів, які дають змогу з більшою точністю встановлювати межі дійних коренів алгебраїчних рівнянь. Розглянемо один з них, так званий спосіб Ньютона.

Зробимо деякі зауваження.

Число , визначене за теоремою 1, дає одночасно верхню межу додатних коренів многочлена і нижню межу його від’ємних коренів, бо вказує інтервал , в якому лежать усі дійсні корені, якщо вони існують. Один з шляхів уточнення, звуження меж, між якими слід шукати дійсні корені, полягає в тому, щоб окремо знаходити нижню і верхню межі додатних коренів та нижню і верхню межі від’ємних коренів даного многочлена, тобто такі чотири числа , що всі додатні корені многочлена лежать в інтервалі , а всі від’ємні – . Якщо многочлена моє корінь нуль, досить розглянути многочлена, утворений з даного ділення на x.

Завдання полегшується тим, що фактично досить знати спосіб знаходження лише одного з цих чотирьох чисел, наприклад – верхньої межі додатних коренів. Знаходження інших трьох меж дійсних коренів рівняння легко звести до знаходження верхньої межі додатних коренів деяких допоміжних рівнянь.

Так, зробивши в рівнянні заміну змінного , дістанемо рівняння , корені якого зв’язані з відповідними коренями заданого рівняння співвідношенням . Якщо – верхняя межа додатних коренів рівняння , тобто , то , звідки видно, щ за нижню додатних коренів рівняння можна взяти число : .

Аналогічно, заміна переводить рівняння в рівняння , корені якого зв’язані з відповідними коренями рівняння рівністю . Якщо – всі додатні корені рівняння , то – всі від’ємні корені рівняння . З нерівності видно, що , тобто верхня і нижня межі від’ємних коренів рівняння виражаються через межі додатних коренів рівняння : .

Отже досить мати правило для знаходження верхньої межі додатних коренів многочлена.

2. Число дійсних коренів

Знання числа і розміщення дійсних коренів многочленів є важливою передумовою застосування багатьох методів чисельного розв’язування рівнянь. В окремих випадках деякі відомості про число дійсних коренів можна дістати за допомогою досить поверхневого аналізу. Іноді при знаходженні меж коренів виявляється, що многочлена не має додатних або від’ємних коренів. Однак для повної відповіді на питання про число дійсних коренів многочлена з дійсними коефіцієнтами (або навіть про число таких коренів на довільному, наперед заданому інтервалі дійсної осі) потрібні більш глибокі дослідження.

У багатьох випадках число дійсних коренів рівняння з дійсними коефіцієнтами можна визначити за простим правилом, яке дав Декарт. Перш ніж формулювати це правило, зробимо деякі зауваження.

Зауваження 1. Розглядатимемо кількість змін знаків у даній упорядкованій скінченій послідовності дійсних чисел розуміючи під цим кількість пар сусідніх чисел цієї послідовності, які мають протилежні знаки. Наприклад, у послідовності –1,-2,6,3,-1,4 є 3 зміни знаків, а в послідовності –1,-2,-6,-3,-1,-4 є 0 змін знаків. Якщо які-небудь з чисел дорівнюють нулю, то при підрахунку числа змін знаків їх до уваги не беруть. Зауважимо, що коли перше й останнє числа і даної послідовності мають однакові знаки, то кількість змін знаків у послідовності парна; якщо ж і мають протилежні знаки, то кількість змін знаків – непарна. Справді, члени послідовності, які безпосередньо йдуть за кожною зміною знаків, мають знак, протилежний знаку тих членів, які передували зміні знаків. Отже, якщо остання зміна знаків має непарний номер, то числа послідовності, що йдуть за нею (і зокрема, ) матимуть знак, протилежний до .

Зауваження 2. Припускатимемо, що розглядуваний многочлена не має кратних коренів, оскільки завжди можна відокремити кратні множники.

Правило Декарта. Число додатних коренів многочлена з дійсними коефіцієнтами

дорівнює числу змін знаків у послідовності його коефіцієнтів або на парне число менше.

Зауваження 1. Правило Декарта можна застосувати і для оцінки числа від’ємних коренів з дійсними коефіцієнтами. Для цього в рівнянні

треба зробити заміну змінного . Зрозуміло, що число від’ємних коренів даного рівняння дорівнює числу додатних коренів рівняння , яке можна оцінити за правилом Декарта.

Якщо дане рівняння повне, тобто жодний коефіцієнт не дорівнює нулю, то число від’ємних коренів можна визначити і не виконуючи заміни . Справді, в цьому випадку число змін збережень знаків у ряді коефіцієнтів многочлена дорівнює числу збережень знаків у ряді коефіцієнтів многочлена . Отже, число від’ємних коренів повного рівняння дорівнює числу збережень знаків у ряді його коефіцієнтів або на парне число менше.

Зауваження 2. Коли наперед відомо, що всі корені даного рівняння дійсні, то правило Декарта дає точну відповідь на питання про число дійсних коренів, а саме: число додатних коренів дорівнює числу змін знаків у ряді коефіцієнтів многочлена , а число від’ємних коренів – числу змін знаків у ряді коефіцієнтів многочлена .

Справді, нехай, як і вище, і – число додатних і від’ємних коренів даного многочлена , -го степеня; і – число змін знаків у ряді коефіцієнтів многочлена і многочлена відповідно. З умови, що всі корені дійсні, випливає: . Якби рівняння були повними, то мали б також . Якщо ж деякі з коефіцієнтів многочлена (а тому й многочлена ) перетворюється в нуль, то числа і можуть тільки зменшитися. Тому в загальному випадку , звідки , або . Але з правила Декарта знаємо, що . Тому насправді .

На жаль, у більшості випадків наперед невідомо, чи всі корені рівняння дійсні. У зв’язку з цим правило Декарта, хоч і зручне з точки зору простоти застосування, не дає повної відповіді на питання про число дійсних коренів рівнянь з дійсними коефіцієнтами та їх розподіл між додатною і від’ємною півосями.

Практична частина

1. Опис програми

Програма складається з двох файлів – polinom.pas і polinom.dat. У файлі polinom.dat записується степень многочлена та його коефіціенти.

Описаняя процедур та функцій:

procedure znach – шукає межі додатніх та ві’ємних коренів;

function znachenie – знаходить значення многочлена в точці;

procedure delenie – відокремлює корені многочлена;

procedure korni – уточнює корені многочлена методом поділу відрізка навпіл;

2. Текст програми

Uses crt;

type ff=array[0..10] of real;

var f0,f1,f2,f3:ff;

prom,kpol:array[0..100] of real;

fil:text;

i,nf,k,iprom:integer;

n0,n1,n2,n3,b:real;

procedure znach(a100:ff ;var a1:ff); {ищет промижутки}

var i1:byte;

begin

if a100[0]<0 then

for i1:=0 to nf-1 do a100[i1]:=-1*a100[i1];

k:=0;

for i1:=0 to nf-1 do

if a100[i1]<0 then begin k:=i1;break end;

b:=0;

for i1:=0 to nf-1 do

if a100[i1]<0 then if b<abs(a100[i1]) then b:=abs(a100[i1]);

a1:=a100;

end;

procedure gran(k1:integer;b1,a5:real;var nk:real);{границы}

begin

if (k1<>0)and(b1<>0) then nk:=1+exp(1/k1*ln(b1/a5))

else nk:=0;

end;

function znachenie(a100:ff;xx:real):real; {значение в тч ХХ}

var y:real;

i100:integer;

begin

y:=a100[0];

for i100:=1 to nf-1 do

y:=y*xx+a100[i100];

znachenie:=y;

end;

procedure delenie(a,b:real);

const dx=0.1;

var z,z1,c:real;

begin

iprom:=0;

prom[0]:=a;

While b>a do begin

z:=znachenie(f0,a);

c:=a;

repeat

a:=a+dx;

z1:=znachenie(f0,a);

until (z*z1<0)or(b<a);

if z*z1<0 then begin iprom:=iprom+1;

prom[iprom-1]:=c;

prom[iprom]:=a;

end;

end;

end;

procedure korni(a8,b8:real);

const eps=0.0001;

var x0:real;

begin

x0:=(a8+b8)/2;

while abs(b8-a8)>eps do begin

if znachenie(f0,a8)*znachenie(f0,X0)<0 then begin b8:=x0;end;

if znachenie(f0,x0)*znachenie(f0,b8)<0 then begin a8:=x0;end;

x0:=(a8+b8)/2 end;

kpol[i]:=x0;

end;

begin clrscr;

assign(fil, ‘polinom.dat’);

reset(fil);

write(‘f=’);

readln(fil,nf);

{****************************************}

for i:=0 to nf-1 do {begin }

read(fil,f0[i]);write(f0[i],’ ‘)end;

writeln;

znach(f0,f0);

gran(k,b,f0[0],n0);

{*****************************************}

for i:=0 to nf-1 do f1[i]:=f0[nf-1-i];

znach(f1,f1);

gran(k,b,f1[0],n1);

{******************************************}

for i:=0 to nf-1 do

if odd(nf-1-i)=true then f2[i]:=-1*f0[i]

else f2[i]:=f0[i];

znach(f2,f2);

gran(k,b,f2[0],n2);

{************************************************}

for i:=0 to nf-1 do

if odd(nf-1-i)=true then f3[i]:=-1*f0[nf-1-i]

else f3[i]:=f0[nf-1-i];

znach(f3,f3);

gran(k,b,f3[0],n3);

if n0<>0 then begin

writeln(‘відрізок додатних коренів [‘,1/n1:1:3,’ ; ‘,n0:1:3,’]’);

delenie(1/n1,n0);

for i:=0 to iprom-1 do begin

korni(prom[i],prom[i+1]);

writeln(kpol[i]:1:2{,’ ‘,znachenie(f0,kpol[i]):1:2}); end; end

else writeln('немає додатніх коренів');

if n3<>0 then begin

writeln('Відрізок від’ємних коренів [',-1*n2:1:3,' ; ',-1/n3:1:3,']');

delenie(-1*n2,-1/n3);

for i:=0 to iprom-1 do begin

korni(prom[i],prom[i+1]);

writeln(kpol[i]:1:2,’ ‘,znachenie(f0,kpol[i]):1:2); end; end

else writeln('немає від’ємних коренів');

readkey;

end.

3. Контрольні приклади

x3-4x2-7x+10=0

відрізок додатних коренів [0,588;8,000]

1,00

5,00

відрізок від’ємних коренів [-4,162;-0,163]

-2,00

x5+2x4-5x3+8x2-7x-3=0

відрізок додатних коренів [0,380;3,646]

1,31

відрізок від’ємних коренів [-9,000;-0,273]

-3,91

-0,30

3x5+7x4-8x3+5x2-2x-1=0

відрізок додатних коренів [0,274;2,633]

0,77

відрізок від’ємних коренів [-3,667;-0,111]

-3,31

-0,26

x3-2,8x2-0,35x+3,45-0

відрізок додатних коренів [0,552;3,800]

1,50

2,30

відрізок від’ємних коренів [-9,000;-0,273]

-1,00


Висновок

В курсовій роботі були розглянуті методи наближеного пошуку меж та самих коренів многочлена з дійсними коренями. Можна знайти багато інших методів наближеного знаходження коренів. Один з них найбільш вдосконалим є метод Лобачевського. Цей метод дозволяє знаходити наближення значення всіх коренів відразу, у тому числі і комплексних, причому не потребує відділення коренів; однако він зв’язан з великими обчисленнями.


Література

1. А. Г. Курош «Курс высшей алгебры», «Наука», Москва 1975

2. С. Т. Завало, В. М. Костарчук, Б. И. Хацет «Алгебра и теория чисел», Том 1,«Высшая школа», Киев 1974

3. С. Т. Завало, В. М. Костарчук, Б. И. Хацет «Алгебра и теория чисел», Том 2,«Высшая школа», Киев 1976


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно