Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Алгебра логики

Тип Реферат
Предмет Математика
Просмотров
1543
Размер файла
61 б
Поделиться

Ознакомительный фрагмент работы:

Алгебра логики

Лекция. Алгебра логики

Кроме обычной алгебры существует специальная, основы которой были заложены английским математиком XIX века Дж. Булем. Эта алгебра занимается так называемым исчислением высказываний.

Ее особенностью является применимость для описания работы так называемых дискретных устройств, к числу которых принадлежит целый класс устройств автоматики и вычислительной техники.

При этом сама алгебра выступает в качестве модели устройства. Это означает, что работа произвольного устройства указанного типа может быть лишь в каком-то отношении описана с помощью построений этой алгебры. Действительное реальное устройство физически работает не так, как это описывает алгебра логики. Однако применение положений этой теории позволяет сделать ряд полезных в практическом отношении обобщений.

Рассмотрим некоторую схему и представим ее в виде так называемого "черного" ящика.

Будем считать, что внутреннее содержимое ящика неизвестно.

X1,X2,X3 – входные сигналы, F – выходной сигнал.

Считаем также, что схема А – элементарная, т.е. нет другой схемы Б, меньшей, чем А, которая бы содержалась в А.

Построим абстрактное устройство из элементарных устройств, типа А, Б, В и т.д. Очевидно, более сложное устройство можно построить из простых путем:

1. последовательного соединения элементов;

2. параллельного соединения;

3. перестановки входов элементов.

Тогда роль Y1 для второго элемента Б будет играть:

Y1=FА(X1,X2,X3)Y2=FБ(X1,X2)F=F(Y1,Y2)=F(FА(X1,X2,X3),FБ(X1,X2))

Параллельное соединение элементов не меняет функции, поэтому, с точки зрения логики, этот тип соединения не используется. Физически иногда все же применяют параллельное соединение элементов, но в основном для того, чтобы, например, усилить сигнал.

В связи с этим, параллельное соединение элементов в алгебре логики не рассматривается.

Функция, которую выполняет элемент, вообще говоря, зависит от переменных, которые подаются на вход.

Поэтому перестановка аргументов влияет на характер функции.


F=F(FА(X1,X2,X3),FБ(X2,X3))

F(FБ(X2,X3),FА(X1,X2,X3))

Таким образом, произвольные, сколь угодно сложные в логическом отношении схемы, можно строить, используя два приема:

1. последовательное соединение элементов;

2. перестановка входов элементов.

Этим двум физическим приемам в алгебре логики соответствуют:

1. принцип суперпозиции (подстановка в функцию вместо ее аргументов других функций);

2. подстановка аргументов (изменение порядка записи аргументов функций или замена одних аргументов функции другими).

Итак, физическая задача построения и анализа работы сложного устройства заменяется математической задачей синтеза и анализа соответствующих функций алгебры логики.

Элементарные функции алгебры логики

Существует несколько синонимов по отношению к функциям алгебры логики:

1. функции алгебры логики (ФАЛ);

2. переключательные функции;

3. булевские функции;

4. двоичные функции.

По мере необходимости будем пользоваться всеми этими синонимами.

Рассмотрим некоторый набор аргументов:

<X1,X2,X3,...Хi,...Xn>

и будем считать, что каждый из аргументов принимает только одно из двух возможных значений, независимо от других

Чему равно число различных наборов?

Xi = {0, 1}

Поставим каждому набору в соответствие некоторое двоичное число:

X1,X2,...........Xn0, 0,...........,0 нулевой набор0, 0,...........,1 первый набор0, 0,..........1,0 второй набор...................1, 1,...........,1 (2n-1)-ый набор

Очевидно, что количество различных X1,X2,...........Xn n-разрядных чисел в позиционной двоичной системе есть 2n.

Допустим, что некоторая функция F(X1,X2,....Xn) задана на этих наборах и на каждом из них она принимает либо '0'-ое, либо '1'-ое значение.

Такую функцию называют функцией алгебры логики или переключательной функцией.

Чему равно число различных переключательных функций 'n' аргументов?

Т.к. функция на каждом наборе может принять значение '0' или '1', а всего различных наборов 2n, то общее число различных функций 'n' аргументов есть: 22n.

По сравнению с аналитической функцией непрерывного аргумента даже для одного аргумента существует множество различных функций.

Число аргументов1234510
Число различных перекл. ф-ций41625665536~4*109~10300

Различные устройства ЭВМ содержат десятки и сотни переменных (аргументов), поэтому понятно, что число различных устройств, отличающихся друг от друга, практически бесконечно.

Итак, нужно научиться строить эти сложные функции (а стало быть, и устройства), а также анализировать их.

Задача синтеза более сложных функций заключается в представлении их через простые на основе операций суперпозиции и подстановки аргументов.

Таким образом, вначале необходимо изучить эти элементарные функции, чтобы на их основе строить более сложные.

ФАЛ одного аргумента

Чтобы задать ФАЛ, нужно задать ее значения на всех наборах аргументов.

Аргумент ХзначениеНаименование функции
01
F0(x)00константа '0'
F1(x)01переменная 'х'
F2(x)10инверсия 'х' (отрицание х)
F3(x)11константа '1'

Будем у функции ставить индекс, эквивалентный набору ее значений для соответствующих значений аргумента, начиная с 0,0,....,0,..... и т.д. в порядке возрастания.

Эти функции можно реализовать на 4-х элементах, каждый из которых имеет максимум один вход. Таким образом, принципом подстановки аргументов для построения более сложных функций нельзя воспользоваться.

Необходимо рассмотреть более сложные функции, т.е. ФАЛ 2х аргументов.

Дадим такие определения:

1. ФАЛ, принимающие одинаковые значения на всех наборах аргументов, называются равными.

2. ФАЛ существенно зависит от аргумента Хi, если

F(X1,X2,...,Хi-1,0,Xi+1,...,Xn) F(X1,X2,...,Хi-1,1,Xi+1,...,Xn)

В противном случае она зависит не существенно, а соответствующий аргумент наз. фиктивным.

Например:

Х1Х2Х3F(X1,X23)
0000
0010
0101
0111
1000
1010
1101
1111

Видно, что Х3 – фиктивный аргумент. Это показывает, что в функцию можно ввести любое число фиктивных аргументов, от которых она существенно не зависит. Этот прием в дальнейшем потребуется для выполнения ряда преобразований.

Все ФАЛ от 2-х аргументов. Сведем их в единую таблицу 2.1.

Таблица 2.1.
№ функцииЗначение функции на наборах логических переменныхНаименование функцииОбозначение функции
X10011
X20101
f0(X1,X2)0000Константа "ноль"f(X1,X2)=0
f1(X1,X2)0001Конъюнкция, произведениеf(X1,X2)= X1& X2f(X1,X2)= X1 X2f(X1,X2)= X1 · X2f(X1,X2)= X1 X2
f2(X1,X2)0010Запрет по X2X1 Δ X2
f3(X1,X2)0011Переменная X1f(X1,X2)= X1
f4(X1,X2)0100Запрет по X1X2 Δ X1
f5(X1,X2)0101Переменная X2f(X1,X2)= X2
f6(X1,X2)0110Сложение по mod2 (неравнозначность)f(X1,X2)= X1 X2
f7(X1,X2)0111Дизъюнкцияf(X1,X2)= X1 X2f(X1, X2)= X1+ X2
f8(X1,X2)1000Стрелка Пирсаf(X1, X2)= X1 X2
f9(X1,X2)1001Равнозначностьf(X1, X2)= X1 X2f(X1, X2)= X1~X2
f10(X1,X2)1010Инверсия X2f(X1, X2)=^X2f(X1, X2)=X2
f11(X1,X2)1011Импликация от X2 к X1f(X1, X2)= X2 X1
f12(X1,X2)1100Инверсия X1f(X1, X2)=^X1f(X1, X2) = X1
f13(X1,X2)1101Импликация от X1 к X2f(X1, X2)= X1 X2
f14(X1,X2)1110Штрих Шеффераf(X1, X2)= X1|X2
f15(X1,X2)1111Константа "единица"f(X1, X2)=1

Эти функции введены формально. Однако им можно придавать определенный "логический" смысл. Алгебра логики часто называется исчислением высказываний.

При этом под высказываниями понимается всякое предложение, относительно которого можно утверждать, что оно истинно или ложно.

Например:

В=<один плюс один - два>

есть истинное высказывание.

Рассмотрим, какое смысловое содержание можно вложить в некоторые сложные высказывания на примере ФАЛ 2-х аргументов.

Инверсия

Читается НЕ Х или Х с чертой, отрицание Х.

Возьмем, например, такое высказывание: А=<Киев-столица Франции>, тогда сложное высказывание НЕ А означает: не верно, что А, т.е. не верно, что <Киев-столица Франции>.

Из простых высказываний можно строить более сложные, применяя так называемые связи.

Логические связи – это ФАЛ, аргументами которых являются простые высказывания.

Конъюнкция

Возьмем 2 высказывания:

А=<Москва – столица РФ>В=<дважды два - четыре>

тогда сложное высказывание: А & В будет истинным, так как истинны оба этих высказывания.

Поскольку таблица истинности для конъюнкции совпадает с таблицей умножения, если истинному высказыванию приписать значение '1', а ложному - '0', то сложное высказывание можно назвать произведением.

X1X2f1(X1,X2)
000
010
100
111

Функция конъюнкции истинна тогда, когда истинны одновременно оба высказывания.

Дизъюнкция

Это сложное высказывание истинно тогда, когда истинно хотя бы одно высказывание, входящее в него.

X1X2f1(X1,X2)
000
011
101
111

Читается X1 ИЛИ X2: Некоторое отличие от смысла союза "или", принятого в русском языке: в данном случае этот союз употребляется в смысле объединения, а не разъединения.

Логическая равнозначность

Это сложное высказывание истинно тогда, когда истинны или ложны одновременно оба высказывания.

Отсюда следует, что вне зависимости от смысла, равнозначными являются как истинные, так и ложные высказывания.

Например,

А=<дважды два - пять>B=<один плюс два - шесть>А~В равнозначны.
Импликация

Это сложное высказывание ложно только тогда, когда X1 – истинно, а X2 – ложно.

X1X2f1(X1,X2)
001
011
100
111

Читается: если X1, то X2. При этом X1 – посылка, X2 – следствие.

Если посмотреть на таблицу истинности, то может показаться странным название этой функции, т.к. из него следует, что истинным может быть высказывание, составленное из двух ложных.

Но в действительности, все верно, т.к. содержанием высказываний в алгебре логики не интересуются.

Тогда из ложной посылки может следовать ложное следствие и это можно считать верным: <если Киев – столица Франции>, то <2-квадрат 3>.

Эквивалентности

В некоторых случаях сложное и длинное высказывание можно записать более коротким и простым без нарушения истинности исходного высказывания. Это можно выполнить с использованием некоторых эквивалентных соотношений.

Дизъюнкция:

х х х х ... х х х= х,

т.е. истинность высказывания не изменится, если его заменить более коротким, таким образом, это правило приведения подобных членов:

– постоянно истинное высказывание.

0 x = x

x1x2 = x2x1


- (переместительный) коммуникативный закон.

x1х2х3 = (x1х2) х3 = x12х3)

- сочетательный закон.

Конъюнкция:

х х х х... х х х= х

правило приведения подобных членов:

- постоянно ложное высказывание

- постоянно ложное высказывание

Сложение по mod 2
1

при нечетном числе членов, 0 - при четном числе членов

Правило де Моргана


Докажем для двух переменных с помощью таблицы истинности:

Х1Х212
0011
0111
1011
1100

Операция поглощения:

Х XY = X

или в общем виде

X X*f(X,Y,Z...) = X;

Операция полного склеивания:

(по Y)(по Х)

Операция неполного склеивания:


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно