Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Численные методы

Тип Реферат
Предмет Математика
Просмотров
1003
Размер файла
85 б
Поделиться

Ознакомительный фрагмент работы:

Численные методы

ЛЕКЦИЯ №5

МЕТОДЫ РЕШЕНИЯ СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

СНУ

Пусть дана система вида:

(5.1)

f'(x)= - производная

Частная производная - вектор (все значения).

МЕТОД НЬЮТОНА

Дана система вида (5.1), где fi один раз непрерывно дифиринцируемые функции, т.е. существуют все частные первые производные этих функций.

Строим последовательность приближений сходящуюся к точному решению системы .

Пусть - некоторое начальное приближение к решению, а - катое приближение к решению. Построим зависимость, позволяющую на основании построить .

Точное приближение

ξ-корень обращает уравнение в верное равенство(тождество).

(5.2)

Разложим функции fi из системы (5.2) в ряд Тейлора в окрестности точки хк до линейных составляющих.

(5.3)

Система (5.3) представляет собой систему линейных алгебраических уравнений для поиска компонента вектора поправки hk.

Перепишем систему (5.3) в виде:

(5.4)

Сокращаем запись системы (5.4) : (5.5)

Решим систему (5.5) методом обратной матрицы. Определитель Якобиана в точке хк не равен 0.

Получили связь последующего приближения с предыдущим.

(5.6)

условие окончания вычислений. (5.7)

- расстояние между векторами (метрика).

МЕТОД ИТЕРАЦИЙ

Пусть дана система вида (5.1). Преобразуем ее к виду (5.8)

Система (5.8) в векторном виде (5.9)

Необходимо найти неподвижную точку систему

Очевидно, что эта точка ξ – решение системы (5.1)

Пусть дано -некоторое начальное приближение к ξ и на k-том шаге получено приближение . Тогда последующее приближение :

(5.10)

Условие окончания совпадает с (5.7)

Всегда ли метод сходится?

Пусть М- матрица, составлена из элементов mij

M=[mij], где mij=

Определение нормы матрицы А: -число удовлетворяющее свойствам.

1) ≥0, =0≡0

2) число

3)

4)

Способы задания нормы матрицы:

1) =

2) =

3) =

Достаточное условие сходимости метода итераций:

Если , i=1,n , на Сч и Сч, то процесс итераций сходится независимо от выбора начального приближения.

МЕТОД ЗЕЙДЕЛЯ

Пусть дана система вида (5.1), преобразуем ее к виду (5.8). Как и в методе итераций строим последовательность приближений к неподвижной точке.

ускорение сходимости за счет подстановки предыдущего приближения.

Достаточное условие совпадает с достаточными условиями сходимости метода итераций.

Условие окончания получения приближений совпадает с (5.7).

ЛЕКЦИЯ № 6, 7

ПРИБЛИЖЕНИЕ ФУНКЦИИ

Общая постановка задачи.

Пусть ¦(c) – некоторая функция, которая можетбыть известно, частично известной и неизвестной. Эту функцию необходимо заменить некоторой «хорошей» функцией j(c), которая будет достаточно близкой ¦(c).

Постановка задачи интерполяции.

Для того чтобы конкретизировать постановку задачи приближения функции необходимо ответить на следующие вопросы:

1. что известно о ¦(c) (способ задания, степень гладкости);

2. к какому классу, семейству функций должна принадлежать j(c);

3. что понимаем под близостью j(c) и ¦(c) каков критерий согласия;

Часто приближение функции называют аппроксимацией

Постановка задачи интерполяции.

Пусть ¦(c) задана на некотором разбиении отрезка [a;b] точками хi,

i=0,n , где a = х01<…<xn= b

интерполяция – вычисление ¦(c) в точке Î[a;b], x¹xi, i = 0,n

экстраполяция – вычисление функции ¦(c) в точке ХÎ[a;b];

Определение интерполяции ввел в 1656 году Джон Уолесс, а в 1655 году ввел символ ¥.

Для полиномиальной интерполяции j(c) имеет вид j(c)=а01х+а2х2+…+аnxn.

Для того, чтобы считать j(c) к ¦(c) вводится ограничение j(ci)= ¦(ci), i=0,n ;

Т.е значения этих функций в точке хi должны совпадать. Точки хi будем называть узлами интерполяции

Интерполяционный многочлен Лагранжа

Необходимо определить коэффициенты полинома степени n(их будет n+1), построения аппроксимации функции, заданной в n+1 узле. Используя ограничения на j(c): j(ci)= ¦(ci)=y, i=0,n , составим систему:

(6.1)

Выпишем определитель этой системы

Определитель

Вандермонда

При условии: x0¹xjприi¹j определитель системы (6.1) отличен от нуля, следовательно, система имеет единственное решение.

Вывод:

если задано разбиение в виде n+1различной точки, то всегда существует функция в виде полинома n-ой степени, которая проходит через все точки графика ¦(c),определенной на этом разбиении.

Посторонние приближенияфункции при помощи полиномов указанным способом весьма трудоемко и обладает большой вычислительной погрешностью, поэтому его использование для большого числа узлов интерполяции нецелесообразно.

Лагранж предложил строить интерполяционные полиномы в виде:

Pn(x)=∑ Cili(x) (6.2)

Ci=yi=¦(ci), li(x)=полиномы n-ой степени, которые удовлетворяют условию:

Для полинома узлы интерполяции xj, j=0,n , j≠I являются корнями, причем действительными и попарно различными (все имеют кратность 1)

Тогда полином liможет быть записан в виде:

(6.3)

Общий вид полинома Лагранжа:

(6.4)

Встает вопрос о точности, о приближения функции. Вводится понятие остаточного члена многочлена Лагранжа ; для того, чтобы оценить аппроксимации ¦(c) в некоторой точке xÎ[a;b]

Функцию ¦(c) представим в виде ¦(c)= Pn(x)+Rn(x), где Rn(x)- остаточный член многочлена Лагранжа в процессе длительного и трудоемкого вывода для Rn(x) получена следующая формула:

(6.5)

Строится система вложенных отрезков

¦(n+1) -производная (n+1)-го порядка

Пусть

(6.6)

Если ¦(c)-полином n-ой степени, то производная (n+1)-го порядка равна 0, тогда Rn(x)≡0 и мы получаем точную аппроксимацию.

Теорема:

Многочлен Лагранжа вида (6.4) для таблично заданной функции единственен.

Доказательство:

Пусть Qn(x)- многочлен Лагранжа, построенный для этой же функции ¦(c) по тем же узлам интерполяции. Qn(x)¹Pn(x) Qn(xi)=yi=Pn(xi),

Рассмотрим многочлен Ln(x)= Qn(x)-Rn(x)-это многочлен n-ой степени, для которого точки xi, i=0,n являются корнями. Это противоречит основной теореме алгебры, которая говорит о том, что полином n-ой степени имеет ровно n корней . А Ln(x) имеет n+1 корней . Противоречие доказывает теорему.

Интерполяционная схема Эйткина

Поскольку при большом числе узлов интерполяции вычисление значения полинома Лагранжа по формуле (6.4) громоздко, необходимо получить рекуррентную формулу.

Пусть ¦(c)- непрерывна, узлы выбраны на отрезке [a;b] таким образом, что:

Введем функцию

xi-узлы интерполяции;

yi=¦(c)

Полином Лагранжа: Pn (x) см. (6.4)

Таким образом, функция Q0,1 (x) представляет собой полином Лагранжа l-ой степени, построенной по узлам x0 ,x1 введем функцию вида

Функция Q1,2 (x)- интерполяционный полином Лагранжа, построенный по узлам x1 ,x2.

Введем теперь функцию

Аналогично:

Q0,1,2 (x2)= у2

В силу единственности полинома Лагранжа, построенного по узлам x0, x1 ,x2

функция Q0,1,2 (x) представляет собой интерполяционный полином Лагранжа 2-ой степени, построенный по узлам x0, x1 ,x2 .

Введем функцию:

(7.1)

Функция представляющая собой полином Лагранжа 2-ой степени, построенного по узлам x0, x1,…xi.

Формула (7.1) позволяет рекуррентно вычислять полином Лагранжа любой степени.

Т.к. (7.1) представляет собой альтернативную форму записи интерполяционного полинома, точность приближения функции также может быть оценена по формуле (6.5)

(7.1)-интерполяционная схема Эйткина.

КОНЕЧНЫЕ РАЗНОСТИ

Пусть функция ¦(c) задана на системе равноотстоящих узлов xi=x0+ih,

где h-шаг сетки, yi=¦(ci).

Конечной разностью первого порядка в точке x0 называется ∆y0=y1-y0

Конечной разностью первого порядка в точке xi: ∆yi=yi+1-y0-yi

Конечной разностью второго порядка в точке x0 : ∆2y0=∆y1-∆y0

Конечной разностью второго порядка в точке xi: ∆2yi=∆yi+1-∆yi

Общая формула для конечной разности k-того порядка в точке xi:


kyi=∆k-1yi+1-∆ky(7.2)

Заметим: 0yi= yi

Формула (7.2) позволяет вычислять рекуррентно конечные разности

Связь конечных разностей и производных

чем меньше h, тем точность выше

Аналогично можем получить связь

; (7.3)

Свойства конечных разностей

В связи с производными вида(7.3)конечные разности обладают свойствами:

1. постоянные, равны нулю;

2. постоянный множитель у функции выносится за знак

3. суммы 2-х функций равны сумме каждой функции

4. полинома n-ой степени, n-го порядка постоянны и равны

ny=hnann!

an-коэффициент при xn полинома Rn(x)

Верно и обратное утверждение: все конечные разности n-го порядка некоторой функции постоянны и одинаковы, конечные разности n +1-го порядка равны 0, а конечные разности n-1-го порядка различны, то функция представляет собой полином n-ой степени.


Распространение ошибки в исходных данныхпри вычислении конечные разности

Любые измерения несут в себе погрешность (ошибка округления, точность измерения приборов)

Пусть значения функции определены в узлах x0, и в некоторой точке xkзначение некоторой точке xkзначение функции найдено с ошибкой ε, т.е ỹk+ ε

Составим таблицу конечных разностей

xk-2 yk-2 ∆yk-2 2yk-2 3yk-3

xk-1 yk-1 ∆yk-1 +ε∆2yk-2 +ε∆3yk-2 -3ε

xkyk+ε ∆yk-1 -ε∆2yk-1 -2ε∆3yk-1 +3ε

xk+1yk+1 ∆yk+1 2yk+ε ∆3yk

xk+2yk+2 2yk+1

Как видно из таблицы конечных разностей при увеличении порядка конечных разностей ошибка в исходных данных распространяется и растет.

Такое взаимодействие ошибок называют шумом, если это ошибки округлений - то шумом округлений.

Если ошибки округлений достаточно большие, то может происходить следующее явление: при увеличении порядка конечных разностей они могут уменьшаться и→0, но, дойдя до некоторого малого значения, опять могут начать расти из-за шума округлений.

Столбец в таблице конечных разностей, в которой все конечные разности ≈0, называют «практическим постоянным»; при этом конечные разности высших порядков не используют.

Для интерполяции целесообразно использовать многочлен такой степени, которая совпадает с порядком «практической постоянной» конечных разностей.

ЛЕКЦИЯ №8

ИНТЕРПОЛЯЦИОННАЯ ФОРМУЛА НЬЮТОНА ДЛЯРАВНООТСТОЯЩИХ УЗЛОВ

Дана функция y=¦(c),заданная на сетке равноотстоящих узлов:

yi=¦(ci), xi=x0+ihi,

Строим интерполяционный полином с целью упрощения записи полинома (интерполяционного) и представления его в виде, позволяющем оценивать влияние каждого из компонентов на значение аппроксимации, запишем его так:

Nn(x)=-a0+a1(x-x0)+a2(x-x0)(x-x1)+…+an(x-x0)…(x-xn-1) (8.1)

Необходимо посчитать его коэффициенты ai. Будем находить из условия

Nn(xi)=yi

i=0: Nn(x0)=y0=a0+a10+…+an0 a0= y0

i=1: Nn(x1)=y1= y0+a1(x1-x0) + a20+…+an0

x1=x0+1h=x1-x0=h

i=2: Nn(x2)=y2= y0+∆y0/h(x2-x0) (x2-x1) + a30+…+an0

x2-x0=2h

x2-x1=h

y2= y0+∆y02+a22h2

i=k: (8.2)

Запишем теперь, используя (8.2), полином (8.1) в виде:

Nn(x)= y0+∆y0/h(x-x0)+…+ ∆n y0 /n!hn(x-x0)(x-x1)… (x-xn-1) (8.3)

Полином (8.3) 1-ый интерполяционный многочлен Ньютона. Он наиболее приспособлен для вычисления значения функции в точках, близких к x0

С целью упрощения записи полинома введем переменную

x=x0+gh

Если g-целое, то будет совпадать с номером узла

x0 – базовый узел полинома (8.3)

xi=x0+gh- x0-ih=h(g-i);

Nn(g)= y0+∆y0g+…+ ∆ny0 /n!g(g-1)(g-2)(g-n+1) (8.4)

Полином Ньютона в силу единственности существования интерполяционного полинома Лагранжа является одной из форм записи полинома Лагранжа, поэтому для полинома (8.3) справедливо, что формула остаточного члена полинома Лагранжа

Для вычисления функции в точках находящихся в середине сетки узлов интерполяции либо в ее конце, т. е близкие к xn, применяют два подхода

1. строят формулы для вычисления функции в точках х, близких к середине сетки интерполяции

2. формулы для точек х, близких к хn (упорядочивание узлов интерполяции).

Соответственно получаются формулы Стирлинга , Бесселя, Гаусса, и 2-ой интерполяционный многочлен Ньютона .

Второй путь: в качестве узла х0 для заданной точки х берут тот узел, который наиболее близок к х, узел х1 выбирают как самый близкий из оставшихся узлов к х.

Т.е последовательность упорядочившаяся по возрастанию.

Для вычисления значения функции в точке х используется 1-ый интерполяционный многочлен Ньютона.


х0 х1 х2 х3 х4 х5 х6

Преобразуем узлы:

х0′=x3;

x1′=x4 ;

x2′=x2 ;

x3′=x5 ;


Разделенные разности

Пусть функция ¦(c),задана на системе неравно отстоящих узлов.

Разделенной разностью 1-го порядка назовем выражение:

Разделенной разностью 2-го порядка:

Разделенной разностью k-го порядка:

(8.6)

|x-x0|,

Свойства разделенной разности:

- на сетке равноотстоящих узлов разделенной разности совпадают конечными разностями

- разделенные разности понижают степень многочлена

- разделенные разности n-го порядка постоянны и равны

Интерполяционная формула Ньютона для не равноотстоящих узлов

Пусть функция ¦(c), задана на сетке не равноотстоящих узлов xi, .Запишем следующие разделенные разности:

Выполним такие действия n-1 раз, получим:

Полином Ньютона:

Nn(x)=¦0(c)

Rn(x)= ¦(c,c0,…cn)(x-x0)… (x-xn) (8.8)

То¦(c)= Nn(x)+ Rn(x)

Nn(x) ≈ ¦(c)

Rn(x) = ¦(c) - Nn(x)

Если ¦(c) имеет (n+1)-ую производную, то остаточный член может быть преобразован к виду остаточного члена (8.9) полинома Лагранжа.

При вычислении полинома в точке х узлы интерполяции лучше переименовать так, чтобы х0 был самым близким к х, а все остальные узлы тем более удаленные по увеличению расстояния к х.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно