Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Тепловий та гідравлічний розрахунок котлеьного агрегату КВ-ГМ-100

Тип Реферат
Предмет Промышленность и производство
Просмотров
496
Размер файла
737 б
Поделиться

Ознакомительный фрагмент работы:

Тепловий та гідравлічний розрахунок котлеьного агрегату КВ-ГМ-100

Тепловий та гідравлічний розрахунок котлеьного агрегату КВ-ГМ-100

ЗМІСТ

Вступ

1.Теплова схема водогрійної частини

1.1 Опис котельні

1.2 Опис котла

1.3 Газопостачання

1.4 Тепловий розрахунок котла КВ-ГМ-100

1.4.1 Вихідні дані для теплового розрахунку котла КВ-ГМ-100

1.4.2 Тепловий баланс

1.4.3 Розрахунок топки

1.4.4 Розрахунок конвективного пучка

2. Гідравлічний розрахунок котлеьного агрегату КВ-ГМ-100

2.1 Задачі розрахунку

2.2 Визначення теплосприйняття та приростів ентальпії в елементах котла

2.3 Розрахунок перепадів тиску в елементах котельного агрегату КВ-ГМ-100

2.4 Результати розрахунку елементів гідравлічного тракту котла КВ-ГМ-100

2.5 Результати розрахунку елементів гідравлічного тракту котла КВ-ГМ-100

Література

ВСТУП

У період проведення економічних реформ і переходу до ринкових відносин підвищений інтерес викликають задачі економії палива. З цього погляду актуально представляється можливість одержання економії палива від проведення режимного налагоджувального режиму на котлоагрегатах. Здійснення подібних заходів забезпечує економію палива в розмірі 3-5%.

Котельня, що проектується, розташована в західній частині міста Бєлгорода. Вона призначена для постачання теплом опальвально-вентиляційних установко та систем гарячого водопостачання житлових, суспільних і промислових будинків, а також постачання парою промислових підприємств, та відносяться до другою категорії по надійності відпуска теплоти споживачам. Котельня проектується з закритою системою теплопостачання. Зважаючи на те, що котельня розташована в безпосередній близкості від існуючої житлової забудови, для будівництва прийнятий варіант закритої установки тягодуттєвих машин.

У котельні встановлені два парових котла КВ-ГМ-100 і два парових котла ДЕ-25-14ГМ. Котельня має розгалужені теплові мережі, не зєднані між собою.

Як основне паливо використовується природний газ родовища Шебелинка-Харків. Джерелом газопостачання є газопровід високого тиску (0,6 МПа). Високосірчаний мазут марки М-100 прийнятий як резервне паливо. Доставка мазуту з централізованого складу здійснюється спецавтотранспортом. Розігрів мазуту здійснюється парою.


1 ТЕПЛОВА СХЕМА ВОДОГРІЙНОЇ ЧАСТИНИ

Покриття зовнішніх теплових навантажень забезпечується водою з розрахунковими температурами 150/70 0С.

Покриття теплопостачання особистих потреб забезпечується частково за рахунок водогрійних котлів – підігрів вихідної та хімочищеної води, деаерація у вакуумному деаераторі та частково за рахунок роботи парових котлів – пари на мазутне господарство, на деаератор живильної води. Принцип роботи водогрійних котлів на газу та на мазуті відрізняється.

В опалювальному періоді індівідуальними котловими регуляторами температури (рециркуляції) у залежності від виду палива, що спалюється, забезпечуються наступні температури: при роботі на газі 70 0С на вході в котел; при роботі на мазуті 150 0С на виході з котла.

Загальнокотельним регулятором витрат (перепуску) при цьому підтримується задача витрати через котли.

Температура в мережі підтримується регулятором палива одного із працюючих котлів, інші котли працюють у режимі заданого теплового навантаження.

У літньому періоді регулятор палива котла підтримує задані температури на вході та виході з котла, у залежності від виду палива, що спалюється.

Витрата води через котел при відключеному клапані перепуску забезпечується впливом на клапан рециркуляції.

Передбачається робота рециркуляційних насосів на загальний рециркуляційний колектор – загальнокотельня рециркуляція з індивідуальним агрегатированим регулюванням рециркуляційної води на кожен котел.

Оснащення котельні реціркуляційною системою по груповому принципу установки рециркуляційних насосів у комбвнації з агрегатованою установкою регуляторів рециркуляції забезпечує розширену можливість включення дійсно необхідної якості працюючих агрегатів у залежнсоті від перемінної потреби водогрійних котлів у рециркуляційній воді.

Циркуляція води в теплових мережах забеспечується мережними насосами.

Влітку як мережні насоси використовуються зимові підпиточні насоси.

З метою попередження газової корозії конвективних поверхонь нагрівання котлів за допомогою рециркуляційних насосів підтримуютьсч температурні режими по мережній воді tк = 70 0С = const при спалюванні газу і tк = 150 0С = const при спалюванні мазуту.

Вихідна вода, що надходить у котельню, перед водопідготовчою установкою підігрівається у водоводяному теплообміннику.

Крім того, передбачений підігрів частини вихідної води в охолоджувачі конденсату, що надходить з виробництва.

Підігрів хімобробленої води до 50 0С перед вакуумними деаераторами здійснюється у водоводяному підігрівнику хімочищеної води і частково в охолоджувачі робочої води.

Після деаерації підпиточна вода з температурою 70 0С самотечією подається в баки-акумулятори або на підпиточні насоси.

У вакуумних деаераторах пароповітряна суміш відсмоктується водоструминними ежекторами і разом з робочою водою скидуються в бак.

Після виділення газових включень вода з температурою 33-34 0С знову подається до ежекторів насосами робочої води після охолодження до 30 0С у водоводяному охолоджувачі робочої води.

Щоб уникнути випадкового відключення від деаератора одночасно обох акумуляторних баків і відповідних гідрогазоотворів, їхні затвори на трубопроводах, що підводять, повинні бути у відкритому положенні. Вони закриваються тільки при ремонті одного з баків-акумуляторів.

Подача води в пряму лінію мережі (вода на гаряче водопостачання) улітку здійснюється зимовими підпиточними насосами, що працюють в якості літніх мережних.

Циркуляція мережної води для власних потреб (підігрів вихідної і хімочищеної води, а також гріюча вода до вакуумного деаератора) здійснюється по внутрішньому контуру котельні спеціальними насосом власних потреб, який зєднаний паралельно з рециркуляційними насосами.

1.1 Опис котельні

Котельня призначена для постачання теплом опалювально-вентиляційних установок та систем гарячого водопостачання жилових, суспільних і промислових будинків, а також постачання парою промислових підприємств, та відноситься до другої категорії по надійності відпуска тепла споживачам.

Співвідношення розрахункових теплових навантажень:

- опалення, вентиляція - 80%;

- гаряче водопостачання – 20%.

Паливо – природний газ і високосірчаний мазут.

Теплоносій для зовнішніх споживачів – вода з розрахунковими температурами 150/70 0С і пара з параметрами Р = 1,37 МПа, t = 194 0С.

Регулювання відпуску тепла якісне за графіком.

Напори мережної води в стіні будинку котельні:

- прямої води узимку – 1,03 МПа (105 мм вод.ст.);

- прямої води влітку – 0,59 МПа (60 мм вод.ст.);

- зворотньої води – 0,2 МПа (20 мм вод.ст.).

Розігрів мазуту здійснюється парою. Компонування котельні виконане з відкритою установкою тягодуттєвих машин для районів з розрахунковою температурою – 30 0С.

Теплові розрахунки проекту виконані для умов роботи котельні в районах з розрахунковою температурою зовнішнього повітря для проектування опалення – 24 0С.

У котельні встановлені два водогрійних котла КВ-ГМ-100 і два парових котла ДЕ-25-14ГМ. КВ-ГМ-100 являє собою сталевий прямоточний агрегат, призначений для нагрівання мережної води. Основні проектні рішення (допоміжне устаткування, головні трубопроводи і т.і.) прийняті з урахуванням можливості розширення котельні.

Теплові навантаження і вихідні дані по режимах наведені в таблиці 1.1.

Таблиця 1.1 – Теплові навантаження і вихідні дані по режимах

НайменуванняОдиниця вимірювання Режими
Розрахунковий Середній найбільш холодного місяцяСередньоопалювальний

У точці

перелому

Літній
Температура зовнішнього повітря0С-24,0-13,5-5,7+1,0≥+8,0
Температура мережної води:
- прямої0С150,0108,38870,070,0
- зворотньої0С70,055,848,541,770,0
Зовнішні теплові навантаження:
- на опалення і вентиляціюМВт (Гкал/год)

183

157

120

104

89

76,3

64,6

56

-

-

- на гаряче водопостачанняМВт (Гкал/год)

45

39

46

39

46

39

46

39

31

26

- на витрати в мережахМВт (Гкал/год)

4,7

4

3,8

3,3

3,5

3

3,0

2,6

0,7

0,6

- загальнаМВт (Гкал/год)

232,0

200

169,8

146,3

138,5

118,3

113,6

97,6

31,7

26,6

Витрати мережної води:
- на гаряче водопостачання з прямої лінії мережі м3/год603,8603,8603,8603,8480
- на втрати в мережахм3/год39,543,046,151,612,0
Усього на вході в котельнюм3/год137314971660193096,4
Усього на виході з котельнім3/год2016,32143,82309,92585,4588,4

1.2 Опис котла

Газомазутний водогрійний котел типу КВ-ГМ-100 виконаний водотрубним, прямоточним з П-образною замкненою компоновкою поверхонь нагрівання.

Котел призначений для одержання гарячої води з температурою 150 0С в окремих котельнях для використання в системах опалення, вентиляції і гарячого водопостачання обєктів промислового і побутового призначення, на ТЕЦ як піково-резервні джерела тепла.

Котел використовується для роботи як в основному режимі, так і в пвковому (для підігріву мережної води відповідно від 70 до 150 0С).

Котел КВ-ГМ-100 повинен працювати з постійною витратою води.

Як розрахункові палива прийняті: мазут марки М100 та природний газ з Qнр = 37,3 МДж/м3.

Топка котла обладнана газомазутними пальниками з ротаційними форсунками типу РГМГ-20 продуктивністю 20 Гкал/год. Пальники допускають форсування: РГМГ-20 до 25 Гкал/год.

Кожен пальник типу РГМГ має автономний вентилятор первинного повітря типу 30ЦС85.

На фронтовій стіні топки котла КВ-ГМ-100 в один ярус встановлені два пальники типу РГМГ-20. Діапазон регулювання навантаження котлів – 20-100% від номінальної продуктивності.

Топка і задня стіна конвективного газоходу цілком екранована трубами Ø60×3 мм із кроком S=64 мм.

Конвективна поверхня нагрівання котла складається з трьох пакетів, розташованих у вертикальному газоході. Кожен пакет набирається з П-образних ширм, виконаних із труб Ø28×3 мм. Ширми пакетів розташовані паралельно фронту котла і встановлені таким чином, що їхні труби утворюють шаховий пучок із кроками S1 = 64 мм і S2 = 40 мм. Бокові стіни конвективного вертикального газоходу закриті трубами Ø83×3,5 мм із кроком S = 128 мм, що є одночасно колекторами для ширм конвективних пакетів.

При роботі на мазуті котли по воді повинні включатися за прямоточною схемою (підведення води здійснюється в поверхні нагрівання топкової камери, а відвід води – з конвективних поверхонь нагрівання. При роботі тільки на газоподібному паливі включення котлів по воді виконується по протиточній схемі (підведення води – у конвективні поверхні нагрівання, а відвід води – з поверхонь нагрівання топкової камери).

Якість мережної і підпиточної води повинна відповідати встановленим вимогам.

Для видалення зовнішніх відкладень із труб пакетів конвективних поверхонь нагрівання при роботі на мазуті котли обладнані установками дробевого очищення. Дріб транспортується повітрям, для чого використовується повітродувка.

Котел виконаний без несучого каркаса. Екрани топкової камери і конвективного газоходу спираються нижніми колекторами через опори на портал. Опора, розташована посередині нижнього колектора проміжного екрана топки, розміщеного між топкою і конвективним газоходом, є нерухомою.

Площадки і сходи котла кріпляться до стінок, що спираються на кронштейни порталу. Обмуровування котла – полегшене, патрубне, товщиною 110 мм. Воно складається з трьох шарів і шамотобетону, совелітових плит чи мінераловатних матраців і магнезіальної обмазки.

Котел КВ-ГМ-100 розрахований на роботу з врівноваженою тягою.

1.3Газопостачання

Газ постачається в котельню від мережі високого тиску Р ≤ 0,6 МПа. Зниження тиску газа до Р = 50 кПа у котлів КВ-ГМ-100 здійснюється в газорегулюючій установці (ГРУ), в якій передбачається для двох котлів КВ-ГМ-100 дві нитки редуцировання з регуляторами РДУК 2В-200/140. Одна нитка робоча, друга – резервна. Для двох котлів ДЕ-35-14ГМ передбачається одна нитка редуцировання з регулятором РД БК1-100/50 з байпасом, яка знижує тиск газа до Р = 60 кПа.

ГРУ розташовується в котельні на площадці з відміткою 6.000. Газообладнання котлів запроектовано з урахуванням роботи на газі пониженого середнього тиску з обладнанням автоматикою безпеки та регулювання.

В якості другого виду палива прийнятий мазут. У випадку роботи котельні тільки на мазутному паливі для розпалу котлів передбачаються штуцери для можливості підлючення газобалонної установки сжиженого газу.

Для заземлення газопроводів проектів передбачається приварка до газопроводу смуг 4×25, другий кінець яких необхідно приварити до контуру заземлення котельні.

Після монтажу до випробувань ГРУ огородити металевою сіткою, газопроводи захищати протикорозійним лакофарбовим покриттям з двох шарів емалі ХВ-125 та двох шарів грунтовки ФЛ-0,3К.

1.4 Тепловий розрахунок котла КВ-ГМ-100

Для теплового розрахунку котлоагрегату необхідна таблиця «ентальпія-температура», що виконується на ЕОМ по програмі, розробленій на кафедрі «Теплотехніка та теплові двигуни» УкрДАЗТ. Метою теплового розрахунку є визначення умов роботи всіх поверхонь нагрівання й уточнення значень температури мережної води в процесі її переміщення по гідравлічному тракту котлоагрегату.

Тепловий розрахунок повинний підтвердити дотримання основних нормативних показників по температурах продуктів згоряння в топці, на виході з неї і по газоходах, аж до температури газів, що йдуть, а також по швидкостях руху газів у газоходах котельног оагрегату й інтенсивності теплопередачі у випадку відхилення будь-яких параметрів від нормативних значень. Тепловий розрахунок служить підставою для забезпечення нормальної тривалої роботи котлоагрегату.


1.4.1 Вихідні дані для теплового розрахунку котла КВ-ГМ-100

Вид палива – природний газ з родовища Шебелінка-Харків.

Склад газу: СН4 = 92,8 %; С2Н6 = 3,9 %; С3Н8 = 1 %; С4Н10 = 0,4 %;

С5Н12 = 0,3 %; N2 = 1,5 %; СО2 = 0,1 %.

Коефіцієнт надлишку повітря:

- топка α = 1,1;

- котельний пучок α = 1,15.

Теплоносій - вода.

Температура води на вході - tвод = 70 0C.

Температура води на виході - t"вод= 1500C.

Температура холодного повітря - tх.п.=30 0С.

Нижча робоча теплота палива – Qpн = 37,3 МДж/м3.

Робочий тиск - Рвод= 2,5 МПа.

1.4.2 Тепловий баланс

Робоча розташовувана теплота палива Qрр, кДж/м3

Qpp= Qpн=37332,9.(1.1)

Температура газів, що йдуть ух., 0С

ух.=180.(1.2)

Ентальпія газів, що йдуть (з I - таблиці) Іух.., кДж/м3

Іух. = 2758,696. (1.3)

Температура холодного повітря tх..n.., °С

tx.n.. (1.4)


Ентальпія теоретично необхідної кількості повітря (з I - таблиці) Ix.n., кДж/м3

Ix.n.=417,148. (1.5)

Втрата теплоти від хімічного недопалу (з таблиці XX[1]) q3, %

q3= 0,5. (1.6)

Втрата теплоти від механічного недопалу (з таблиці XX[1]) q4, %

q4 = 0. (1.7)

Втрата теплоти з газами, що ідуть q2, %

, (1.8)

.

Втрата теплоти у навколишнє середовище (з рисунку 5-1 [1]) q5, %

q5 = 0,2. (1.9)

Втрата теплоти зі шлаком q6, %:

q6 = 0. (1.10)

Сума теплових втрат ∑q, %


∑q=q2+ q3+ q4+ q5+ q6=6,105+0,5+0+0,2+0=6,805. (1.11)

Розрахунковий ККД котельного агрегату ηк.а..,%

ηк.а. =100-∑q = 100-6,805 = 93,195. (1.12)

Витрата води через котлоагрегат (по завданню) Gвод, т/год

Gвод=1235. (1.13)

Кількість корисно використаної теплоти Qп., кВт

. (1.14)

Витрата палива В, м3/год

. (1.15)

Розрахункова витрата палива Вр, м3/год

. (1.16)

Коефіцієнт збереження теплоти φ

. (1.17)

1.4.3 Розрахунок топки

Розрахунок теплообміну в топках водогрійних котлів ґрунтується на додатку теорії подоби до топкових процесів. На базі цієї теорії розроблений нормативний метод розрахунку котельних агрегатів [1].

Об'єм топки (з заводських характеристик) Vт, м3

Vт = 388,0. (1.18)

Видима теплова напруга топкового об'єму

- дійсне розрахункове qv, кВт/м3

. (1.19)

- нормативне (з таблиці XX[1]) qv0, кВт/м3

qv0= 350. (1.20)

qv <qv0.(1.21)

Діаметр труб екранів (з заводських характеристик) , мм

. (1.22)

Відстань від осей труб до стін (з заводських характеристик) e, мм

e=30. (1.23)


Площі стін зайнятих екранами (з заводських характеристик):

- бічних Fбок., м2: (1.24)

- фронтового і заднього , м2Fз + Fф=105. (1.25)

Крок екранних труб (з заводських характеристик), мм

. (1.26)

Кутовий коефіцієнт екрана (з номограма 1 [1])

- бічного : . (1.27)

- фронтового і заднього, м2. (1.28)

Коефіцієнт забруднення (з таблиці 6-2 [1]) ξ

ξ=0,65. (1.30)

Коефіцієнт теплової ефективності екранів

- бічного . (1.31)

- фронтового і заднього, м2

- . (1.32)

Сумарна поверхня стін топки , м2

. (1.34)


Середній коефіцієнт теплової ефективності екранів

. (1.35)

Ефективна товщина випромінюючого шару, м

. (1.36)

Температура газів на виході з топки (приймається з майбутнім уточненням) , °С

. (1.37)

Ентальпія газів на виході з топки (з I-таблиці) , кДж/м3

(1.38)

Сумарна об'ємна доля трьохатомних газів і водяної пари (з розрахунку на ЕОМ)

(1.39)

Добуток,

.. (1.40)


Коефіцієнт ослаблення променів газовими частками (з номограми 3 [1])

, :

. (1.41)

Коефіцієнт ослаблення променів трьохатомних газів , :

. (1.42)

Коефіцієнт надлишку повітря на виході з топки

. (1.43)

Відношення

(1.44)

Коефіцієнт ослаблення променів сажистими частками , :

(1.45)

.


Ступінь чорноти світного полум'я

. (1.46)

Ступінь чорноти газового факела

. (1.47)

Коефіцієнт усереднення (за пунктом 6-07 [1])

. (1.48)

Ефективний ступінь чорноти факела

. (1.49)

Ступінь чорноти топки

. (2.50)

Температура повітря на вході в топку , 0С

. (1.51)

Ентальпія теоретично необхідної кількості повітря , кДж/м3


. (1.52)

Теплота, внесена в топку повітрям , кДж/м3

. (1.53)

Тепловиділення в топці , кДж/м3

.(1.54)

Теоретична температура горіння (з I- таблиці) , 0C

, (1.55)

К. (1.56)

Середня сумарна теплоємність продуктів згоряння , кДж/м3

. (1.57)

Середнє теплове навантаження поверхонь нагрівання , кВт/м2

. (1.58)

Висота розміщення пальників (за кресленням) , м


=1,82. (1.59)

Висота топки , м

. (1.60)

Відносна висота розміщення пальників

. (1.61)

Коефіцієнт виправлення (за пунктом 6-14 [1])

. (1.62)

Характеристика положення максимуму температури

. (1.63)

Параметр (за пунктом 6-13 [1])

. (1.64)

Розрахункова температура газів на виході з топки , 0С


(1.65)

.

Ентальпія газів на виході з топки (з І- таблиці) , кДж/м3

(1.66)

Питома кількість теплоти, передана в топці випромінюванням , кДж/м3

(1.67)

Сумарна кількість теплоти, переданої в топці , кВт

. (1.68)

Витрата мережної води через екранні труби , кг/год

. (1.69)

Нагрівання води при проходженні через екранні труби , 0С

. 1.70)


1.4.4 Розрахунок конвективного пучка

Тепловий розрахунок конвективних поверхонь нагрівання котла КВ-ГМ-100 проводиться по газоходах котельного агрегату. Тому в газоході конвективного пучка температура газів значно змінюється і середній температурний напір для всього пучка істотно відрізняється від температурного напору на початку і наприкінці його, умовно поділяємо газохід на чотири частини. Площа поверхні нагрівання в кожній обраній для розрахунку ділянці газоходу визначаємо по фактичній кількості труб, їх довжині і зовніньому діаметру. Температуру води на вході в конвективний пучок приймаємо з наступних розумінь. На вході в котел розрахункове значення температури 70 0С, а в трубах топкових екранів збільшення температури отримане в тепловому розрахунку топки (приблизно 30-40 0С). Можливі відхилення дійсних значень температури води від прийнятих у розрахунку невеликі і не впливають на точність теплового розрахунку конвективного пучка.

Розрахункова точка 1

Температура газів перед газоходом (з розрахунку попередньої поверхні) , 0С

. (1.71)

Ентальпія газів перед газоходом (з I-таблиці при α= 1,15), кДж/м3

. (1.72)

Діаметр труб (по кресленню), мм

. (1.73)


Кроки труб (по кресленню)

- поперечний , мм: . (1.74)

- подовжній , мм: . (1.75)

Розміри газоходу (по кресленню)

- ширина , м: . (1.76) –

довжина , м: . (1.77)

Число труб (по кресленню)

- в одному ряді : . (1.78)

- уздовж потоку газів : . (1.79)

Загальне число труб

. (1.80)

Площа поверхні нагрівання (по кресленню) , м2

. (1.81)

Площа живого перетину для проходу газів , м2

. (1.81)

Температура газів за газоходом (приймається з наступним уточненням) , 0С

. (1.82)

Ентальпія газів за газоходом (з І- таблиці при α= 1,15) , кДж/м3

. (1.83)


Кількість теплоти по рівнянню теплового балансу , кДж/м3

. (1.84)

Середня температура газів , 0С

. (1.85)

Середня температура води в трубах , 0С

. (1.86)

Більша різниця температур , 0С

. (1.87)

Менша різниця температур , 0С

. (1.88)

Середній температурний напір , 0С

. (1.89)


Об'єм продуктів згоряння, на 1 м3палива (з роздруківки при α=1,15) , м33

. (1.90)

Середня швидкість газів , м/с

. (1.91)

Коефіцієнт тепловіддачі конвекцією (за номограмою 13 [1]) , Вт/м2

. (1.92)

Температура забрудненої поверхні труб , 0С

. (1.93)

Ефективна товщина випромінюючого шару , м

. (1.94)

Сумарна об’ємна доля трьохатомних газів і водяних пар (з розрахунку на ЕОМ при α=1,15)


. (1.95)

Добуток ,

. (1.96)

Коефіцієнт ослаблення променів газовим середовищем (з номограми 3 [1])

,

. (1.97)

Ступінь чорності тіла

. (1.98)

Коефіцієнт тепловіддачі випромінюванням (за номограмою 19 [1]) , Вт/м2

. (1.99)

Коефіцієнт теплової ефективності (за таблицею 7-3 [1])

. (1.100)


Коефіцієнт теплопередачі , Вт/м2

. (1.101)

Кількість теплоти, сприйнята поверхнею по рівнянню теплопередачі , кДж/м3

. (1.101)

Відношення

. (1.102)

Розрахункова точка 2

Температура газів перед газоходом (з розрахунку попередньої поверхні) , 0С

. (1.103)

Ентальпія газів перед газоходом (з I-таблиці при α= 1,15), кДж/м3

. (1.104)

Діаметр труб (по кресленню), мм

. (1.105)


Кроки труб (по кресленню)

- поперечний , мм: . (1.106)

- подовжній , мм: . (1.107)

Розміри газоходу (по кресленню)

- в одному ряді : . (1.108)

- уздовж потоку газів : . (1.109)

Загальне число труб

. (1.110)

Площа поверхні нагрівання (по кресленню) , м2

. (1.111)

Площа живого перетину для проходу газів , м2

. (1.112)

Температура газів за газоходом (приймається з наступним уточненням) , 0С

. (1.113)

Ентальпія газів за газоходом (з І- таблиці при α= 1,15) , кДж/м3

. (1.114)

Кількість теплоти по рівнянню теплового балансу , кДж/м3


. (1.115)

Середня температура газів , 0С

. (1.116)

Середня температура води в трубах , 0С

. (1.117)

Більша різниця температур , 0С

. (1.118)

Менша різниця температур , 0С

. (1.119)

Середній температурний напір , 0С

. (1.120)

Об'єм продуктів згоряння, на 1 м3палива (з роздруківки при α=1,15) , м33


. (1.121)

Середня швидкість газів , м/с

. (1.122)

Коефіцієнт тепловіддачі конвекцією (за номограмою 13 [1]) , Вт/м2

. (1.123)

Температура забрудненої поверхні труб , 0С

. (1.124)

Ефективна товщина випромінюючого шару , м

. (1.125)

Сумарна об’ємна доля трьохатомних газів і водяних пар (з розрахунку на ЕОМ при α=1,15)

. (1.126)


Добуток ,

. (1.127)

Коефіцієнт ослаблення променів газовим середовищем (з номограми 3 [1])

,

. (1.128)

Ступінь чорності тіла

. (1.129)

Коефіцієнт тепловіддачі випромінюванням (за номограмою 19 [1]) , Вт/м2

. (1.130)

Коефіцієнт теплопередачі , Вт/м2

. (1.131)

Кількість теплоти, сприйнята поверхнею по рівнянню теплопередачі , кДж/м3


. (1.132)

Відношення

%. (1.133)

Розрахункова точка 3

Температура газів перед газоходом (з розрахунку попередньої поверхні) , 0С

. (1.134)

Ентальпія газів перед газоходом (з I-таблиці при α= 1,15), кДж/м3

. (1.135)

Діаметр труб (по кресленню), мм

. (1.136)

Кроки труб (по кресленню)

- поперечний , мм: . (1.137)

- подовжній , мм: . (1.138)

Розміри газоходу (по кресленню)

- ширина а, м: а = 5,79; (1.139)

- довжина b, м: b = 2,76; (1.140)

Число труб (по кресленню)

- в одному ряді : . (1.141)

- уздовж потоку газів : . (1.142)

Загальне число труб

. (1.143)

Площа поверхні нагрівання (по кресленню) , м2

. (1.144)

Площа живого перетину для проходу газів , м2

. (1.145)

Температура газів за газоходом (приймається з наступним уточненням) , 0С

. (1.146)

Ентальпія газів за газоходом (з І- таблиці при α= 1,15) , кДж/м3

. (1.147)

Кількість теплоти по рівнянню теплового балансу , кДж/м3

. (1.148)

Середня температура газів , 0С


. (1.149)

Середня температура води в трубах , 0С

. (1.150)

Більша різниця температур , 0С

. (1.151)

Менша різниця температур , 0С

. (1.152)

Середній температурний напір , 0С

. (1.153)

Об'єм продуктів згоряння, на 1 м3палива (з роздруківки при α=1,15) , м33

. (1.154)

Середня швидкість газів , м/с


. (1.155)

Коефіцієнт тепловіддачі конвекцією (за номограмою 13 [1]) , Вт/м2

. (1.156)

Температура забрудненої поверхні труб , 0С

. (1.157)

Ефективна товщина випромінюючого шару , м

. (1.158)

Сумарна об’ємна доля трьохатомних газів і водяних пар (з розрахунку на ЕОМ при α=1,15)

. (1.159)

Добуток ,

. (1.160)


Коефіцієнт ослаблення променів газовим середовищем (з номограми 3 [1]) ,

. (1.161)

Ступінь чорності тіла

. (1.162)

Коефіцієнт тепловіддачі випромінюванням (за номограмою 19 [1]) , Вт/м2

. (1.163)

Коефіцієнт теплопередачі , Вт/м2

. (1.165)

Кількість теплоти, сприйнята поверхнею по рівнянню теплопередачі , кДж/м3

. (1.166)

Відношення

%. (1.167)

Розрахункова точка 4

Температура газів перед газоходом (з розрахунку попередньої поверхні) , 0С

. (1.168)

Ентальпія газів перед газоходом (з I-таблиці при α= 1,15), кДж/м3

. (1.169)

Діаметр труб (по кресленню), мм

. (1.170)

Кроки труб (по кресленню)

- поперечний , мм: .(1.171)

- подовжній , мм: . (1.172)

Розміри газоходу (по кресленню)

- ширина а, м: а = 5,79; (1.173)

- довжина b, м: b = 2,76; (1.174)

Число труб (по кресленню)

- в одному ряді : . (1.175)

- уздовж потоку газів : . (1.176)

Загальне число труб

. (1.177)

Площа поверхні нагрівання (по кресленню) , м2


. (1.178)

Площа живого перетину для проходу газів , м2

. (1.179)

Температура газів за газоходом (приймається з наступним уточненням) , 0С

. (1.180)

Ентальпія газів за газоходом (з І- таблиці при α= 1,15) , кДж/м3

. (1.181)

Кількість теплоти по рівнянню теплового балансу , кДж/м3

. (1.182)

Середня температура газів , 0С

. (1.183)

Середня температура води в трубах , 0С

. (1.184)

Більша різниця температур , 0С


. (1.185)

Менша різниця температур , 0С

. (1.186)

Середній температурний напір , 0С

. (1.187)

Об'єм продуктів згоряння, на 1 м3палива (з роздруківки при α=1,15) , м33

. (1.188)

Середня швидкість газів , м/с

. (1.189)

Коефіцієнт тепловіддачі конвекцією (за номограмою 13 [1]) , Вт/м2

. (1.190)

Температура забрудненої поверхні труб , 0С


. (1.191)

Ефективна товщина випромінюючого шару , м

. (1.192)

Сумарна об’ємна доля трьохатомних газів і водяних пар (з розрахунку на ЕОМ при α=1,15)

. (1.193)

Добуток ,

. (1.194)

Коефіцієнт ослаблення променів газовим середовищем (з номограми 3 [1]) ,

. (1.195)

Ступінь чорності тіла

. (1.196)

Коефіцієнт тепловіддачі випромінюванням (за номограмою 19 [1]) , Вт/м2


. (1.197)

Коефіцієнт теплопередачі , Вт/м2

. (1.198)

Кількість теплоти, сприйнята поверхнею по рівнянню теплопередачі , кДж/м3

. (1.199)

Відношення

%. (1.200)

2 ГІДРАВЛІЧНИЙ РОЗРАХУНОК КОТЕЛЬНОГО АГРЕГАТУ

2.1 Задачі гідравлічного розрахунку

Задачею гідравлічного розрахунку прямострумних котельних агрегатів є забезпечення надійності поверхонь нагріву, раціональна компоновка їх; визначення витрат тиску в котлі, натиску живильного насосу та розробка заходів по підвищенню надійності.

При гідравлічних розрахунках визначають масові швидкості середовища, запаси надійності по стійкості струму, гідравлічним і температурним розвідкам, а також температурний режим труб, втрати тиску в елементах та котлі в цілому, необхідність установки дросельних шайб та їх розмірів. Гідравлічний розрахунок повинен виконуватися для всіх різнотипних контурів та тих однотипних, які знаходяться в найгірших умовах по обігріву та мають найбільш неблагоприємні конструктивні особливості.

В даному проекті гідравлічний розрахунок виконано для номінального навантаження. Задача розрахунку – визначити перепад тиску в водяному тракті з метою вибору живильного насосу та встановлення значень тиску в елементах тракту визначенню надійності роботи екранних труб топочної камери по мінімально допустимій швидкості руху середи в них.

Котельний агрегат складається з топочної камери, яка екранована трубами, і конвективної шахти, в якій розташовані хвостові поверхні нагріву. Водяний тракт котла розділений на два паралельних струми; при роботі котла на газі подача живильної води здійснюється в нижній колектор конвективної шахти, відпуск гарячої води здійснюється в нижній колектор конвективної шахти, відпуск гарячої води споживачу – із нижнього колектора фронтового екрана топки. По ходу обігрівної середи поверхні включен послідовно: задній екран конвективної шахти – конвективний пароперегрівач – задній екран топки – боковий екран топки – фронтовий екран топки.

Конструктивні дані елементів котлоагрегата приведені в таблиці 2.1.


Таблиця 2.1 – Конструктивні дані елементів котлоагрегата КВ-ГМ-100

ЕлементНапрямок потокуЧисло ходів,nЧисло елементів на агрегаті, n, шт.Діаметр, товщина стінки d×S, ммЧисло труб в елементів, n, шт.Перетин елемента, F, м2Середня довжина труб l, ммВисота елемента, h1ПоворотиКолекторРізниця відміток Δhкол, м
Кут αЧисло nпов, штроздаючийзбираючий
Діаметр, товщина стінки d×S, ммЧисло nр, шт.Перетин fр, м2Діаметр, товщина стінки d×S, ммЧисло nс, шт.Перетин fр, м2
Задній екран конвективної шахти Підйомний1164×5280,0641010--273×3510,032273×3510,03210
Перепускні трубиГоризонтальне 12273×3510,03210-902-------
Конвективні пароперегрівачіГоризонтальне та підйомне3228×36720,2551069012273×3520,032273×3520,0326
Перепускні трубиПідйомно-опускне12273×3520,032105903-------
Задній екран топкиПідйомно-опускне2164×5840,19210,710,7904273×3520,032273×3520,03210,7
Перепускні трубиПідйомно-опускне12273×3520,03210,33902-------
Боковий екран топкиПідйомно-опускне4264×5960,2210,310,7

90

70

8

16

273×3520,032273×3520,03210,7
Перепускні трубиПідйомно-опускне12273×3520,032103902-------
Фронтовий екран топкиПідйомно-опускне2164×5880,20210,710,7902273×3520,032273×3520,03210,7

2.2 Визначення теплосприйняття та приростів ентальпії в елементах котла

Теплосприйняття окремих радіаційних елементів визначається за формулою, кДж/год

, (2.1)

де - коефіцієнт нерівномірності тепло сприйняття елемента, прийнятий згідно п. 5-10 та додатку І (2);

- середнє питоме тепло сприйняття радіаційних нерівномірностей, кДж/(м2·год);

- ефективна радіаційна поверхня нагріву елементу, м2.

Теплосприйняття елементів конвективних поверхонь нагріву визначається згідно «Теплового розрахунку котельних агрегатів» з урахуванням коефіцієнтів нерівномірностей теплосприйняття по додатку І[2].

Ентальпія середи в котлі кожного елементу визначається за формулою, кДж/кг

, (2.2)

де - ентальпія середи на початку елемента;

- витрата середи в елементі.

Теплосприйняття елементів котла КВ-ГМ-100 приведені в таблиці 2.2.


Таблиця 2.2 - Теплосприйняття елементів котла КВ-ГМ-100

Елемент

Коефіцієнт нерівно-мірностей

Площа поверхонь елемента

Н, м2

Питоме тепло- сприйняття

, кДж/(м2·год)

Кількість елементів

n, шт

Теплосприйняття , кДж/год
Фронтовий екран топки1,260,8587132,8139259030
Боковий екран топки1101,6587132,821,13·108
Задній екран топки160,8587132,8138856450
Конвективний перегрівач12360,21104617,112,5·108
Задній екран конвективної шахти10,05104617,115230,8

Приріст ентальпії в елементах котла КВ-ГМ-100 приведені в таблиці 2.3.

Таблиця 2.3 – Приріст ентальпії в елементах котла КВ-ГМ-100

Елемент Тепло-сприйняття, кДж/год

Початкова ентальпія,

ін, кДж/кг

Приріст ентальпії,

Δіел, кДж/кг

Початкова ентальпія,

ік, кДж/кг

Задній екран конвективної шахти 5230,82940,42294,3
Конвективний перегрівач 2,5·108294,3216510,2
Задній екран топки38856450511,531541,2
Боковий екран топки1,13·108541,863,6604,8
Фронтовий екран топки39259030604,831,8636

2.4 Розрахунок перепадів тиску в елементах котельного агрегату КВ-ГМ-100

Коефіцієнти опору водяного тракту котла приведені в таблиці 2.4.

Таблиця 2.4 - Коефіцієнти опору водяного тракту котла

Елемент

Вхід

ξвх

Тертя

Оберти

Σξпов

Вихід
λ0λовξвихz
Задній екран конвективної шахти0,50,4462,035,251,28,98
Перепускні труби0,50,0480,483,50,85,28
Конвективний перегерівач0,51,29,5324,51,235,73
Перепускні труби0,50,0480,483,50,85,28
Задній екран топки0,51,7417,571,226,1
Перепускні труби0,50,0480,483,50,85,28
Боковий екран топки0,417,517,533,21,252,3
Перепускні труби0,50,480,483,50,85,28
Фронтовий екран топки0,417,517,571,826,1

Розрахунок перепадів тиску в гідравлічному тракті котла КВ-ГМ-100 приведений в таблиці 2.5.


Таблиця 2.5 – Перепади тиску в гідравлічному тракті котла КВ-ГМ-100

ВеличинаРозрахункова формулаФронтовий екран топкиПерепускні трубиБоковий екран топкиПерепускні трубиЗадній екран топкиПерепускні трубиКонвективний пароперегрівачПерепускні трубиЗадній екран конвективної шахти
1234567891011
Тиск середи на виході з елемента , кгс/см21010,96311,7212,7113,514,441515,7116,9
Витрата середи , кг/годЗадано585884585884585884585884585884585884585884585884585884

Теплосприйняття елемента

, кДж/год

По табл. 2.239259030-1,13·108-38856450-2,5·108-530,8
Масова швидкість середовища в елементі , кг/(м2/с)805,75085,8739,755085,8847,65085,8638,25085,82542,9
Приріст ентальпії середовища в елементі , кДж/кг31,8-63,6-31-215,8-0,42
Ентальпія середовища на виході з елемента , кДж/кг636,6604,8604,8541,2541,2510,2510,2294,3294,3
Те ж на вході , кДж/кг604,8604,8541,2541,2510,2510,2294,3294,3294
Середня ентальпія середовища в елементі , кДж/кг620,7604,8570,9541,2525,7510,2400,1294,3294,3
Повний коефіцієнт опору zПо і та Рк0,0010890,0010830,0010750,0010690,0010650,001060,0010390,0010220,001022
Перепад тиску в елементі , кгс/см2939,5939,57538,41568,274411017,87378,47113,83024,7
Повний коефіцієнт опору zПо табл. 2.426,126,15,2852,35,2821,15,285,288,98
Розрахунковий коефіцієнт для збираючого колектораПо п.2 – 60(2)2-2-2-2-2
Те ж для роздаючого АрПо п.2 – 60(2)0,8-0,8-0,8-0,8-0,8
Щільність середо-вища у роздаючому колекторі , кг/м3По ін та Рк917,4-923,4-934,6- 942,5-978,5
Теж у збираючому , кг/м3По ік та Рк923,4-934,6-942,5-978,3-978,5
Швидкість середо-вища у роздаючому колекторі , м/с5,54-5,51-5,44-5,4-5,2
Теж в збираючому колекторі , м/с5,51-5,44-5,4-5,2-5,2
Зміна тиску по довжині роздаючого колектора , кгс/м22870-2857,7-2819,4-2801,6-2801,6
Зміна тиску по довжині збираючого колектора , кгс/м21148-1143,1-1127,8-1120,6-1120,6
Сумарна зміна тиску в колекторах для середніх труб , кгс/м2-11,48--1714,6--1691,6-1120,7-1120,7
Середня щільність середовища , кг/м3По і919,1923,4930,2935,5939943,4962,5978,5978,5
Нівелюючий перепад тиску в елементі , кгс/см29834,4-9953,4-10047,3-5871-9705
Сумарний перепад тиску в елементі , кгс/см29625,97538,49806,874419373,57378,455217113,811689

2.5 Результати розрахунку елементів гідравлічного тракту котла КВ-ГМ-100

Результати гідравлічного розрахунку котла КВ-ГМ-100 приведені в таблиці 2.6.

Таблиця 2.6 - Результати гідравлічного розрахунку котла КВ-ГМ-100

Витрата G, кг/годМасова швидкість wV, кг/(м2·с)Тепло-сприйняття Q, кДж/годТиск на виході Рвих, кгс/см2Перепад тиску ΔР, кгс/см2Ентальпія на виході ік, кДж/кгПриріст ентальпії, кДж/кгТемпература на виході, tк, 0С
Задній екран конвективної шахти585884805,739259030100,963 636,631,8150
Перепускні труби5858845085,8-10,9630,757604,8-143,5
Конвективний перегерівач585884739,751,13·10811,720,99604,863,6143,5
Перепускні труби5858845085,8-12,710,79741,8-129
Задній екран топки585884847,63885645013,50,96741,831129
Перепускні труби5858845085,8-14,440,56511,5-121
Боковий екран топки585884638,22,5·108150,71511,5215,8121
Перепускні труби5858845085,8-15,711,19294,3-70
Фронтовий екран топки5858842542,95230,816,91,22940,4270

Для циркуляції води в контурі котла необхідний мережний насос з характеристиками:

- витрати води – 1235 м3/год (1170780 кг/год);

- корисний напір – 125 м вод. ст.

Даним вимогам задовольняє насос мережної води Д1250-125 з електродвигуном А2-5005-4 (N=636 кВт; n = 140 хв-1), який забезпечує витрату води 1250 м3/год з натиском 125 м вод. ст. з максимальним ККД.


ЛІтература

1. Суриков В.С. – Основи теплової та електронної побутової техніки – М. «Протон» - 2001 г.

2. Карков И.С. – Физика элементарных частиц. – М. – 1999 г.

3. Синджанов И.К. Электродинамика – М. 2005 г.

4. Электротехнические материалы. Справочник / В.Б. Березин, Н.С. Прохоров, А.М. Хайкин. - М.: Энергоатомиздат, 1993. - 504с.

5. Рычина Т.А., Зеленский А.В. Устройства функциональной электроники и электрорадиоэлементы . - М.: Радио и связь, 1999. - 352с.

6. Резисторы: Справочник / В.В. Дубровский, Д.М. Иванов и др.; Под общ. ред. И.И. Четверткова и В.М. Терехова. - М.: Радио и связь, 1997. - 352с.

7. Справочник по отопительной электротехники: ремонт / Под ред. И.И. Четверткова, В.Ф. Смирнова. - М.: Радио и связь, 2003. - 576с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 096 оценок star star star star star
среднее 4.9 из 5
им. С.Ю.Витте
Работа выполнена досрочно, содержание по существу, маленький недочет был исправлен. Спасибо!
star star star star star
БПТ
Обращался к Елене Александровне второй раз Всё очень здорово и оперативно сделанно, без за...
star star star star star
"КрасГАУ"
Заказываю в первый раз у Евгения , и остался максимально доволен , всё чётко !)
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решение задач по предмету «Математика»

Решение задач, Математика

Срок сдачи к 29 дек.

1 минуту назад

Отчет с выполнением заданий

Решение задач, Отчет, бух учет

Срок сдачи к 25 дек.

4 минуты назад

Расчет параметров участка электроэнергетической системы

Решение задач, Электрические системы, электроника, электротехника

Срок сдачи к 8 янв.

4 минуты назад
4 минуты назад

Сделать курсач по методике

Курсовая, Электротехника

Срок сдачи к 26 дек.

5 минут назад

Психология безопасности труда

Реферат, Русский язык и культура речи

Срок сдачи к 29 дек.

7 минут назад

Сделать реферат и презентацию

Презентация, Биомеханика

Срок сдачи к 25 дек.

7 минут назад

написать курсовую работу по уголовному праву

Курсовая, Уголовное право

Срок сдачи к 25 дек.

7 минут назад

Начертить 12 чертежей

Чертеж, Начертательная геометрия

Срок сдачи к 9 янв.

8 минут назад

Феномен успеха и успешность в профессиональном развитии

Реферат, Психология

Срок сдачи к 28 дек.

9 минут назад

В файле прикреплен пример выполнения задания

Контрольная, Криминология

Срок сдачи к 27 дек.

9 минут назад

9-11 страниц. правовые основы военной реформы в ссср в 20-е гг

Реферат, История государства и права России

Срок сдачи к 26 дек.

10 минут назад

Выполнить реферат. История Англии. Е-01554

Реферат, Английский язык

Срок сдачи к 26 дек.

10 минут назад

Составить Проект массового взрыва

Контрольная, Взрывное дело, горное дело

Срок сдачи к 8 янв.

12 минут назад

Термодинамика

Решение задач, Термодинамика

Срок сдачи к 26 дек.

12 минут назад

Нужен реферат, объем 15-20 страниц

Реферат, Безопасность в техносфере

Срок сдачи к 5 янв.

12 минут назад

Выполнить реферат. История Англии. Е-01554

Реферат, История

Срок сдачи к 26 дек.

12 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно