Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Антье и ее окружение

Тип Реферат
Предмет Математика
Просмотров
998
Размер файла
115 б
Поделиться

Ознакомительный фрагмент работы:

Антье и ее окружение

Андреев А.А., Савин А.Н.

Антье и ее свойства

Целой частью действительного числа x называется наибольшее целое число, не превосходящее x. Обозначается целая часть x символом "[x]". Далее целую часть x будем также называть "антье" (от франц. entire -целый). Например: [3,5]=3, [-3,5]=-4, [3]=3, [-5]=-5.

Наряду с целой частью числа существует понятие дробной части числа, которая обозначается "{x}" и определяется следующим образом: {x} = x-[x]. Так {3,5}=0.5, {-3,5}=-0.5, {5}=0, {-5}=0. Очевидно, что для любого действительного числа x выполняется двойное неравенство:0 Ј {x} < 1.

Антье обладает различными свойствами. Перечислим некоторые из них.

1. Если x і 0, то [x] і 0. Если x < 0, то [x] < 0.

2. Если p - целое число, то [x+p] = [x]+p.

Так как дробная часть числа x равна дробной части числа x+p, то из равенства {x+p} = {x} следует x+p-[x+p] = x-[x], откуда получаем [x+p] = [x]+p.

3. Для любых двух действительных чисел a и b справедливо [a+b] і [a]+[b].

Действительно, a = [a]+{a}, b = [b]+{b}. Следовательно, a+b = [a]+[b]+{a}+ {b}. Так как[a] и [b] - целые числа, то по свойству 2

[a+b] = [[a]+ [b]+{a}+{b}] = [a]+[b]+[{a}+ {b}] і [a]+ [b],

потому что {a}, {b} і 0 и по свойству 1 [{a}+ {b}] і 0.

Свойство 3 распространяется также на любое конечное число действительных чисел:

[a+b+...+w] і [a]+[b]+...+ [w].

4. Если [x] = [y], то |x-y| < 1.

Так как x = [x]+{x}, y = [y]+{y}, то |x-y| = |[x]+{x}-[y]-{y}| = |{x}-{y}| <1. Последнее неравенство следует из того, что дробная часть числа больше или равна нулю и меньше единицы. Следовательно, разность дробных частей двух чисел больше -1 и меньше 1, а модуль этой разности меньше 1. Отсюда |x-y| < 1.

5. Если n - натуральное число, то для любого действительного x выполняется

é

ê

ë

[x]

n

ù

ú

û

=

é

ê

ë

x

n

ù

ú

û

.

Так как x = nq+r+a, 0 Ј r < n, a = {x}, то

é

ê

ë

[x]

n

ù

ú

û

=

é

ê

ë

nq+r

n

ù

ú

û

=

é

ê

ë

q+

r

n

ù

ú

û

= q

é

ê

ë

x

n

ù

ú

û

=

é

ê

ë

nq+r+a

n

ù

ú

û

=

é

ê

ë

q+

r+a

n

ù

ú

û

= q.

Теперь, познакомившись с целой и дробной частью, можно рассмотреть следующий

Пример 1. Доказать, что для всех вещественных a и b выполняется неравенство

[a]+[a+b]+[b] Ј [2a]+[2b].

Решение.

Пусть [a+b] = [a]+[b]+e3; [2a] = 2[a]+e1; [2b] = 2[b]+e2; где ei - целое. Покажем, что e3 равно 0 или 1. Имеет место неравенство

-1 = a+b-1-a-b < [a+b]-[a]-[b] < a+b-a+1-b+1 = 2.

Отсюда получаем, что -1 < e3 < 2, откуда e3 = 0 или e3 = 1, то же верно для e1, e2. Рассмотрим разность

[2a]+[2b]-[a]-[b]-[a+b] = [a+a]+[b+b]-[a]-[a+b]-[b] =
= [a]+[a]+e1+[b]+[b]+e2-[a]-[a]-[b]-e3-[b] = e1+e2-e3.

Осталось показать, что e1+e2-e3 і 0, ei = 0 или 1. Это неравенство может быть нарушено только при e1 = e2 = 0 и e3 = 1. Покажем, что это невозможно. Если e1 = 0 то [2a] = 2[a], т.е. a = N+d, где N - целое, а 0 Ј d < 0,5, аналогично, b = K+l, где K - целое, а 0 Ј l < 0,5, но тогда [a+b] = N+K = [a]+[b], т.е.e3 = 0. Мы пришли к противоречию, следовательно [a]+[a+b]+[b] Ј [2a]+[2b], что и требовалось доказать.

Пример 2. Найдите

lim

n®Ґ

{(2+Ц2)n}.

Решение

Число Nn = (2+Ц2)n+(2-Ц2)n является целым при любом натуральном n. Поэтому

lim

n®Ґ

{(2+Ц2)n} =

lim

n®Ґ

{Nn-(2-Ц2)n} =

lim

n®Ґ

{-(2-Ц2)n} =

lim

n®Ґ

(1-{(2-Ц2)n}) = 1,

так как {-z} = 1-{z}, если z - не целое число, и |2-Ц2| < 1.

Пример 3. Найдите [x], если x=1+(1/2)2+(1/3)2+...+(1/1997)2.

Решение

Для любого натурального числа n і 2 справедлива оценка

1

N2

<

1

n(n-1)

=

1

n-1

-

1

n

.

Применим эту оценку ко всем слагаемым числа x, начиная со второго:

x < 1+æ
ç
è
1-

1

2

ö
÷
ø
+æ
ç
è

1

2

-

1

3

ö
÷
ø
+...+æ
ç
è

1

1996

-

1

1997

ö
÷
ø
= 2-

1

1997

< 2.

Так как 1 < x < 2, то [x] = 1.

Графики антье

Наверно вы уже где-нибудь встречали графики функции y=[x], так называемые "ступени", и y={x} - "забор"; оба графика приведены на рисунках ниже.

<> <>

Рассмотрим общий метод построения графиков функций y=[f(x)], y=f([x]), y={f(x)}, y=f({x}).

Построение графика функции y=[f(x)].

Итак, пусть график функции y=f(x) построен (рисунок ниже слева черным цветом). Построение графика функции y=[f(x)] выполняют в следующем порядке:

<><>

1) проводят прямые y= n (n ОZ) и рассматривают одну из полос, образованных прямыми y=n и y=n+1;

2) точки пересечения прямых y=n, y=n+1 с графиком функции y=f(x) будут принадлежать графику функции y=[f(x)], поскольку их ординаты - целые числа; другие точки графика y=[f(x)] в рассматриваемой полосе получим как проекцию части графика y=f(x) на прямую y=n, поскольку любая точка этой части графика функции y=f(x) имеет такую ординату y1, что n Ј y1 < n+1, т.е. [y1] = n;

3) в каждой другой полосе, где есть точки графика функции y=f(x), построение проводится аналогично.

Пример построения графика для конкретной функции приведен на рисунке справа (График функции y=[arcsin x] выделен красным цветом).

Построение графика фунции y=f([x]).

Пусть график функции y=f(x) построен (рисунок слева ниже черным цветом). Построение графика функции y=f([x]) выполняют в следующем порядке:

<><>

1) проводят прямые x=n (n ОZ) и рассматривают одну из полос, образованную линиями x=n, x=n+1;

2) точки пересечения графика функции y=f(x) с прямыми y=n принадлежат графику функции y=f([x]), поскольку их абсциссы - целые числа; другие точки графика функции y=f([x]) в рассматриваемой полосе получим как проекцию части графика функции y=f(x), которая находится в этой полосе, на прямую y=f(n), поскольку любая точка этой части графика имеет такую абсциссу x1, что n Ј x1 < n+1, т.е. [x1]=n;

3) в каждой другой полосе, где есть точки графика функции y=f(x), построение производится аналогично.

Пример построения графика для конкретной функции приведен на рисунке справа (График функции y=[ax]2 выделен красным цветом).

Построение графика фунции y={f(x)}.

Теперь рассмотрим метод построения графика функции y={f(x)}, а так как {f(x)}=f(x)-[f(x)], то вместо графика функции {f(x)} строят разность графиков функций y = f(x) и y = [f(x)]. График на левом рисунке выделен красным цветом.

<>

Практически это построение выполняют так: 1) строят график функции y=f(x) и проводят прямые y=n (n ОZ);

2) в точках пересечения этих прямых с графиком функции y=f(x) проводят прямые, параллельные оси ординат. Значения функции y={f(x)} попадают в образованные прямоугольники. Части графика функции y = f(x), которые попали в эти прямоугольники и располагаются в верхней полуплоскости, опускают вниз на расстояние n. Части графика функции, попавшие в нижнюю полуплоскость переносят вверх на расстояние |n|+1.

Пример построения графика для конкретной функции приведен на рисунке справа. (График функции y={ax} выделен красным цветом).

Построение графика фунции y=f({x}).

Проще всего строятся графики функции y=f({x}). Легко заметить, что такие функции периодичны с периодом T=1, и на отрезке [0; 1] f({x})=f(x). Отсюда следует способ построения графика функции y=f({x}):

1) строят график функции y=f(x) на [0; 1);

2) продолжают этот график, учитывая свойство периодичности функции y=f({x}) и y=1/x2.

<>

Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 368 оценок star star star star star
среднее 4.9 из 5
ДВГУПС
очень ответственно подошел к работе! Надеюсь на дальнейшее сотрудничество
star star star star star
Технический нефтегазовый институт
Спасибо Оксане, очень быстрое и качественное исполнение работы. Защита прошла на отлично. ...
star star star star star
ГУЗ
Спасибо Большое! Реферат был написан в короткие сроки и очень доступным языком
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Исследуйте на сходимость числовой знакоположительный ряд

Решение задач, Математика

Срок сдачи к 20 янв.

только что

4 задания

Контрольная, Статистика

Срок сдачи к 18 янв.

только что

Выполнить курсовой. Финансы организаций. Р-00271

Курсовая, Экономика

Срок сдачи к 22 янв.

только что

Английский

Решение задач, Английский

Срок сдачи к 15 янв.

1 минуту назад

В данный момент требуется узнать стоимость

Курсовая, Бухгалтерский учет

Срок сдачи к 1 апр.

1 минуту назад

Решить 2 задачи и ответить на вопросы.

Решение задач, Электротехника

Срок сдачи к 17 янв.

2 минуты назад

Выполнить курсовой. Финансы организаций. Р-00271

Курсовая, Финансы

Срок сдачи к 22 янв.

2 минуты назад

8 заданий под вариантами 7,17,27,37,47,57,67,77

Контрольная, Математика

Срок сдачи к 14 янв.

2 минуты назад

Тема в задании нужно сделать курсовую по организации пар Севастополь...

Курсовая, Бухгалтерская и налоговая отчетность

Срок сдачи к 15 янв.

2 минуты назад

Выполнить Индивидуальный проект, Обществознание

Контрольная, Обществознание

Срок сдачи к 18 янв.

4 минуты назад

Сделать 3 призентации

Презентация, SMM в спорте

Срок сдачи к 18 янв.

4 минуты назад

сравнительный анализ мер валютного контроля

Презентация, Таможенное дело

Срок сдачи к 15 янв.

4 минуты назад

Тесты,Экзамены

Другое, Все

Срок сдачи к 19 янв.

5 минут назад

Решить контрольную

Контрольная, Биология

Срок сдачи к 30 янв.

5 минут назад

Технологическая (проектно-технологическая) практика

Отчет по практике, Педагогическое образование

Срок сдачи к 16 февр.

6 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно