Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Некоторые подходы к задачам распознавания образов и их приложениям

Тип Реферат
Предмет Математика
Просмотров
968
Размер файла
33 б
Поделиться

Ознакомительный фрагмент работы:

Некоторые подходы к задачам распознавания образов и их приложениям

Е.Т. Рамазанов

Сейчас статистические исследования развиваются в направлении научного предсказывания, прогнозирования социально- экономической среды. Один из подходов решение вопроса прогнозирование заключается в решении задач классификаций.

Одно из условий развития науки в направлении научного прогнозирования заключается в возможностях современной ЭВМ, которые позволяют обрабатывать огромные массивы информации.

Известно что существует множество подходов решений вопроса научного прогнозирования,такие как эксперимент, компьютерная моделирования.Возникает вопрос, на сколько можно доверять результатамрешений предсказываниие, и, вообще, достоверен ли полученный результат,насколько разница она с действительностью. Безусловно что решая конкретную заданную задачу, каждый метод имеет свои плюсы и минусы и исследователь используя тот или иной метод стремится к тому что бы ошибка разницы была достаточно маленькой, и если уж совсем ошибки не возможно устранить, то оценить их (здесь вопрос достоверности он переносит в иное поле, исследователь решает вопрос объективно имитирует ли реальный процесс или явление созданная модель. или. Строит критерий качества т.е. применяет идей оптимизации. Если да то он доверяет результату ). Оценить ошибку достоверности предсказывание порой и невозможно сделать ибо статистические оценки гипотез вероятностны.

Описанный здесь подход может быть эффективен с точки зрение достоверного предсказывания.

Задача классификаций тесно связана с такими дисциплинами как математическая статистика, теория вероятностей, кластерный анализ. Было проделана огромная работа по разработке методов и подходов решений задач классификаций. Фундаментом послужили такие работы как Дж. Хартигана, Миркина, Дюрана М.Б. ,Дж. Вэн Райзена , Айвазяна . и др.

Решение задачи классификаций основана на кластерном анализе.

Изложенные здесь основные идей кластерного анализа основываются на работах [2 ]и[ 3].

Пусть множество Т=( Т 1Т2 Т3 ,…, Тn) обозначает n обьектов .

Предположим, что существует некоторое множество наблюдаемых

показателей или характеристик.Обозначим это множество

С=(С1 С2 С3, .. ., Ср); этими характеристиками обладает каждый индивид из множества Т.Наблюдаемые характеристики могут быть количественными или качественными . Наблюдение часто называют измерениями. Результат измерение i-й характеристики(измерение ) Tj –обьекта обозначим хij, авектор Хj=[ хij] размером рХ1 будет отвечать каждому ряду измерений для j- го обьекта . Таким образом исследователь множеством

Х=(Х1 Х2 Х3 ,…, Хp) описывает множество Т.

Множество Х может представлено как к точек в р- мерном евклидовом пространстве Ер .

Задача кластерного анализа заключается в том чтобы на оснований данных в множестве Х разбить множество Т на m-классов m<n.

Так чтобы, каждый обьект принадлежал одному и только одному подмножеству разбиение , и что бы обьекты принадлежащие одному и тому же классу были сходными в то время как обьекты различных классов были бы разнородными.

Разбиение здесь следует понимать как разделение множество Т на определенное число непустых попарно непересекающихся подмножеств.

Решение задачи кластерного анализа является разбиение удовлетворяющее некоторому критерию оптимальности . в качестве критерия может быть функционал например сумма квадратов отклонений

W==xi-измерение i-го обьекта.

Критерий оптимальности показывает когда мы получили нужное разбиение.

Очевидно чтобы решить задачу кластерного анализа необходимо количественно определить понятия сходства и разнородности .

Задача была бы решена если ТiТjобьекты попадали в один и тот же класс всякий раз когда расстояние между точками Хi Хjбыло бы достаточным малым и ,наоборот,обьекты попадали бы в разные классы когда между соответствующими точками расстояние было бы достаточно большим.

Расстояние d(XiXj) между точками Хi Хjpмерном евклидовом пространстве можно задать положительно определенной функцией, которая является метрикой и удовлетворяет аксиомам метрики. Отметим что функция расстояние d(XiXj) задает соответственно сходство между обьектами Тi Тj. Существует множество видов функций расстояние использующий в евклидовом пространстве .например евклидова метрика , Л норма, расстояние Махаланобиса . приведем лишь евклидова метрику

d(XiXj)= ;

Расстояние между n обьектами можно задать в виде симметричной матрицы размером nХn. Такую матрицу иногда называют матрицей связей.

Также можно определить меру сходства . Мера сходства s(XiXj) положительно определенная функция и удовлетворяет следушим условиям :

1. s(Xi Xi)=1 ;

2. s(Xi Xj)=s(Xj Xi) ;

3. s(XiXj) определена в интервале [0 1] ;

мы можем задать меру сходство с помощью функций расстояние

например:

s(Xi Xj)=1/1+d(Xi Xj) ;

Существует множество методов классификаций .описание этих методов и принципов вы можете найти в работе 3. Интересен аппроксимационный подход. Пусть имеется матрица связей D

размером nxn. Рассмотрим отношение эквивалентности Rn , которое порождает разбиение множество Х на непустые m классы

Rn=(RnRnRn…Rn). представим Rk в виде бинарной матрицы. Элемент матрицы равны 1, если обьекты лежат в одном классе и равны 0 в противном случае. Требуется найти разбиение с булевой матрицей Rn, которая бы в наибольшей мере соответствовала матрице связей. Как сопоставить матрицу связей D и матрицу Rn друг с другом. В работе [6] предлагают, взвешивать матрицу Rn , вводя некоторый коэффицент маштаба , и сдвига с критерием аппроксимаций.

K(Rn,,)=min;

Где dij=d(XiXj); rij-элементы матрицы Rn.Для аналитического решение удобно что либо зафиксировать.

Если задан порог близости >0; Построим бинарную матрицу отношений толерантности Q с элементами равной 1 если dij, и равные 0 в противном случае. Близость между матрицами Q и Rkоценивается расстоянием Хемминга .

r(Q, Rn)= ;

где -неотрицательные весовые коэффициенты.

Требуется найти матрицу Rn аппроксимирующего матрицу Q. Существует большая группа методов кластерного анализа в основе которой лежит решение этой задачи .

Предположим, что мы имеем результат разбиение построенного нами алгоритма классификаций. Справедливо ли отнес обьект Тi

классу Rn, когда в действительности он принадлежит, быть может, к другому классу. В этом случай исследователь идет по одному из пути. Обрабатывает набор данных разными алгоритмами. результаты сравнивает между собой, или если есть эксперт, то сравнивает с его разбиением. Но экспертного разбиение может и не быть, а сравнение результатов разных алгоритмов может быть не достаточным.

В таком случае исследователь может проверит кластер данных на «реальность». Понятие реальности кластера данных основывается на идеях Дж.Хартигана.

Как вообще предполагается строить прогнозирования социально-экономической среды в задачах классификаций. Рассмотрим на примере . Пусть имеем n городов каждую из которых характеризуем некоторыми параметрами . например с1-потребление электроэнергий ,с2- личным потреблением и.т.д.

Тогда Х вектор представляет собой набор указанных характеристик Задача классификаций заключается в том чтобы разбить города по уровню развития. Ппредположим ,что мы разбили города по уровню рразвития,и предположим ,что результат разбиение реален.

Теперь изменим параметр одного города проверим снова не изменился ли результат разбиение на основе результата можно строить прогнозы .Прогноз будет достоверным ибо алгоритм классификаций разбивает правильно . в заключении стоить отметит, что исследователь должен убедится в том, что алгоритм классификаций разбивает правильно.

Применение алгоритмов распознавания для решений задач сегментации. Одним из интересных приложений теорий распознавания является возможности использовать некоторые модели этой теорий для решения задач в разных областях математики. В частности для решения трудных комбинаторных задач и таких как задача сегментации программ[6]. Под задачей сегментации обычно принято понимать задачу разбиения последовательной программы на взаимозависимые по управлению и информационной части (блоки, сегменты и. т. д. ) в соответствии с той или иной целью. Для решения задач сегментации существует ряд методов. Которые разделяются условно на несколько подходов. Которые позволяют в основном получить лишь приближенные решения при неизвестной погрешности определяемых решений. Один из таких подходов является кластерный подход[6]. Кластерный подход основывается на представлении задачи сегментации как задачи кластерного анализа. Сама программа в этом случае является точкой n-мерного пространства.

Для решения задачи сегментации программ кластерный подход опирается на классическую графовую постановку задачи сегментации и обладающей некоторыми специфическими особенностями.

Формулировка задачи состоит в следующем: Требуется разрезать вершины полного, взвешенного графа на части таким образом, чтобы суммарный вес вершин, попавших в каждое подмножество не превосходил заданного значения, а суммарный вес внешних по отношению к разбиению ребер был бы минимален. При решении различных прикладных задач распознавания и классификации успешно применяется метод опорных подмножеств. Впервые метод опорных подмножеств был описан Ю.И. Журавлевым. Принципиальную возможность применения метода опорных подмножеств для решения задачи сегментации было описана в работе[6]. Основной трудностью здесь является содержательная интерпретация параметров данного метода, задающих соответствующий класс алгоритмов вычисления оценок.

Интересным подходом для решения задач распознавания образов и классификаций, а также некоторых дискретных экстремальных задач, в частности задачи сегментации является нейросетевой подход.

Список литературы

Гонсалес Р.К. Принципы распознавания образов./Пер. с англ. И.Б.Гуревича: под ред. Ю.И. Журавлева: М. Мир 1978.

Мандель И.Д. Кластерный анализ./ М.: Финансы и статистика.1988.

Дж. Вэн Райзен Классификация и кластер./Труды науч.семинара.: М. Мир.1980

Дюран М.Б. Кластерный анализ. - :М. Финансы и статистика, 1977.-220с.

Аркадьев А.Г. и Браверманн Э.М. Обучение машины классификаций объектов./М.Наука.1971.

Дюсембаев А.Е. Математические модели сегментации программ. - М.: Физматлит,

2001.-208с.

Вишняков Ю.С., Сулейманов Б.С. Построение алгоритмов распознавания для обработки видеоизображении, корректных для заданной контрольной выборки М.:Наука,1989.-126с.

Журавлев Ю.И . Алгоритмы вычисления оценок и их применение. - М.: Фан,1989.-119с.

Хартиган Дж. А. Задачи связанные с функциями распознавания в кластер-анализе. –М.: Мир, 1989.- 230c.

Кнут. Д. Исскуство прогаммирования для ЭВМ. М.: Мир,1977.-T.2.-724c.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно