Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Теорема Безу

Тип Реферат
Предмет Математика
Просмотров
1528
Размер файла
34 б
Поделиться

Ознакомительный фрагмент работы:

Теорема Безу

Этьен Безу

французский математик, член Парижской Академии Наук( с 1758 года ), родился в Немуре 31 марта 1730 года и умер 27 сентября 1783 года.

С 1763 года Безу преподавал математику в училище гардемаринов, а с 1768 года и в королевском артиллерийском корпусе.

Основные работы Этьена Безу относятся к высшей алгебре, они посвящены созданию теории решения алгебраических уравнений. В теории решения систем линейных уравнений он содействовал возникновению теории определителей , развивал теорию исключения неизвестных из систем уравнений высших степеней, доказал теорему (впервые сформулированную К. Маклореном ) о том , что две кривые порядка m и n пересекаются не более чем в mn точках. Во Франции и за её границей вплоть до 1848 года был очень популярен его шеститомный“Курс математики “, написанный им в 1764-69 годах. Безу развил метод неопределённых множителей, в элементарной алгебре его именем назван способ решения систем уравнений, основанный на этом методе . Часть трудов Безу посвящена внешней баллистике. Именем учёного названа одна из основных теорем алгебры.

Теорема Безу.

Остаток от деления полинома Pn(x)

на двучлен (x-a) равен значению

этого полинома при x = a.

Пусть :

Pn(x) – данный многочлен степени n ,

двучлен (x-a) - его делитель,

Qn-1(x) – частное от деления Pn(x) на x-a (многочлен степени n-1 ) ,

R – остаток от деления ( R не содержит переменной x как делитель первой степени относительно x ).

Доказательство :

Согласно правилу деления многочленов с остатком можно записать :

Pn (x) = (x-a)Qn-1(x) + R .

Отсюда при x = a :

Pn (a) = (a-a)Qn-1 (a) + R =0*Qn-1(a)+R=

=0+R=R .

Значит , R = Pn(a) , т.е. остаток от деления полинома на (x-a) равен значению этого

полинома при x=a , что и требовалось доказать .

Следствия из теоремы .

Следствие 1 :

Остаток от деления полинома Pn(x)

на двучлен ax+b равен значению

этого полинома при x = -b/a ,

т. е. R=Pn (-b/a) .

Доказательство :

Согласно правилу деления многочленов :

Pn (x)= (ax + b)* Qn-1 (x) + R .

При x= -b/a :

Pn (-b/a) = (a(-b/a) + b)Qn-1(-b/a) + R = R. Значит , R = Pn (-b/a) , что и требовалось доказать.

Следствие 2:

Если число aявляется корнем

многочлена P(x) , то этот

многочлен делится на (x-a) без

остатка .

Доказательство :

По теореме Безу остаток от деления многочлена P (x) на x-a равен P (a) , а по условию a является корнем P (x) , а это значит , что P (a) = 0, что и требовалось доказать .

Из данного следствия теоремы Безу видно , что задача решения уравнения P (x) = 0 равносильна задаче выделения делителей многочлена P , имеющих первую степень ( линейных делителей ) .

Следствие 3 :

Если многочлен P (x) имеет

попарно различные корни

a1 , a2 , … , an, то он делится на

произведение (x-a1) … (x-an)

без остатка .

Доказательство :

Проведём доказательство с помощью математической индукции по числу корней . При n=1 утверждение доказано в следствии 2 . Пусть оно уже доказано для случая , когда число корней равно k , это значит , что P(x) делится без остатка на (x-a1)(x-a2) … (x-ak) , где

a1 , a2 , … , ak - егокорни .

Пусть P(x) имеет k+1 попарно различных корней .По предположению индукции a1 , a2 , ak , … , ak+1 являются корнями многочлена, а , значит, многочлен делится на произедение (x-a1) … (x-ak) , откуда выходит , что

P(x) = (x-a1) … (x-ak)Q(x).

При этом ak+1– корень многочлена P(x) , т. е. P(ak+1) = 0 .

Значит , подставляя вместо xak+1 , получаем верное равенство :

P(ak+1) = (ak+1-a1) … (ak+1-ak)Q(ak+1) =

=0 .

Но ak+1 отлично от чисел a1 , … , ak , и потому ни одно из чисел ak+1-a1 , … , ak+1-ak не равно 0 . Следовательно , нулю равно Q(ak+1) , т. е. ak+1 – корень многочлена Q(x) . А из следствия 2 выходит , что Q(x) делится на x-ak+1 без остатка .

Q(x) = (x-ak+1)Q1(x) , и потому

P(x) = (x-a1) … (x-ak)Q(x) =

=(x-a1) … (x-ak)(x-ak+1)Q1(x) .

Это и означает , что P(x) делится на (x-a1) … (x-ak+1) без остатка .

Итак, доказано , что теорема верна при k =1 , а из её справедливости при n = k вытекает , что она верна и при n = k+1. Таким образом, теорема верна при любом числе корней , что итребовалось доказать .

Следствие 4 :

Многочлен степени n имеет не более

n различных корней .

Доказательство :

Воспользуемся методом от противного: если бы многочлен Pn(x) степени n имел бы более n корней - n+k (a1 , a2 , … , an+k - его корни ) , тогда бы по ранее доказанному следствию 3 он

бы делился на произведение (x-a1) … (x-an+k) , имеющее степень n+k, что невозможно .

Мы пришли к противоречию , значит наше предположение неверно и многочлен степени n не может иметь более , чем n корней , что и требовалось доказать .

Следствие 5 :

Для любого многочлена P(x)

и числа a разность

(P(x)-P(a)) делится без

остатка на двучлен (x-a) .

Доказательство :

Пусть P(x) – данный многочлен степени n , a - любое число .

Многочлен Pn(x) можно представить в виде : Pn(x)=(x-a)Qn-1(x)+R ,

где Qn-1(x) – многочлен , частное при делении Pn(x) на (x-a) ,

R – остаток от деления Pn(x) на (x-a) .

Причём по теореме Безу :

R = Pn(a) , т.е.

Pn(x)=(x-a)Qn-1(x)+Pn(a) .

Отсюда

Pn(x) - Pn(a) = (x-a)Qn-1(x) ,

а это и означает делимость без остатка ( Pn(x) – Pn(a) )

на (x-a), что и требовалось доказать .

Следствие 6 :

Число a является корнем

многочлена P(x) степени

не ниже первой тогда и

только тогда , когда

P(x) делится на (x-a)

без остатка .

Доказательство :

Чтобы доказать данную теорему требуется рассмотреть необходимость и достаточность сформулированного условия .

1.Необходимость .

Пусть a – корень многочлена P(x) , тогда по следствию 2 P(x) делится на (x-a) без остатка .

Таким образом делимость P(x) на (x-a) является необходимым условием для того , чтобы a являлось корнем P(x) , т.к. является следствием из этого .

2.Достаточность .

Пусть многочлен P(x) делится без остатка на (x-a),

тогда R = 0 , где R – остаток от деления P(x) на (x-a) , но по теореме Безу R = P(a) , откуда выходит , что P(a) = 0 , а это означает , что a является корнем P(x) .

Таким образом делимость P(x) на (x-a) является и достаточным условием для того , чтобы a являлось корнем P(x) .

Делимость P(x) на (x-a) является необходимым и достаточным условием для того, чтобы a являлось корнем P(x) , что и требовалось доказать .

Следствие 7(авторское):

Многочлен , не имеющийй действи-

тельных корней , в разложении

на множители линейных множителей

не содержит .

Доказательство :

Воспользуемся методом от противного: предполо-жим , что не имеющий корней многочлен P(x) при разложении на множители содержит линейный множитель (xa):

P(x) = (x – a)Q(x),

тогда бы он делился на (xa) , но по следствию 6 a являлось бы корнем P(x) , а по условию он корней не содержит . Мы пришли к противоречию , значит наше предположение неверно и многочлен ,

не имеющий действительных корней , в разложении на множители линейных множителей не содержит , что и требовалось доказать .

На основании теоремы Безу и следствия 5 можно доказать следующие утверждения:

1. Разность одинаковых натуральных степеней на разность их оснований делится без остатка :

ПустьP(x) = xn , P(a) = an ,

тогда xnan – разность одинаковых натуральных степеней .

По следствию 5

P(x) - P(a) = xn – an = (x – a)Q(x) ,

а это значит , что

(xn–an)/(x–a)=Q(x), т.е. разность одинаковых натуральных степеней на разность их оснований делится без остатка , что и требовалось доказать .

Итак

(xn – an)/(x – a) = xn-1 + axn-2 + a2xn-3 + … +an-2x + an-1.

2. Разность одинаковых чётных степеней на сумму их оснований делится без остатка .

ПустьP(x) = x2k , тогда P(a) = a2k .

Разность одинаковых чётных степеней x2k - a2k равна P(x) – P(a) .

P(a) = a2k = (-a)2k = P(-a) , т.е. x2k - a2k = P(x) – P(-a).

По следствию 5

P(x) - P(-a) = (x –(- a))Q(x)=

= (x + a)Q(x)

а это значит , что

x2k – a2k = (x + a)Q(x) или

(x2k – a2k)/(x + a) = Q(x) ,

т.е. разность одинаковых чётных степеней на сумму их оснований делится без остатка , что и требовалось доказать .

Итак ,

(x2k – a2k)/(x + a) = x2k-1 – ax2k-2 + … +a2k-2x + a2k-1.

3. Разность одинаковых нечётных натуральных степеней на сумму их оснований не делится .

Пусть P(x) = x2k+1 - a2k+1– разность одинаковых нечётных степеней .

По теореме Безу при делении x2k+1 - a2k+1 на x + a = x – (-a) остаток равен

R = P(-a) = (-a)2k+1 – a2k+1 = -2a2k+1

Т. к. остаток при делении не равен 0 , то разность одинаковыхнечётных натуральных степеней на сумму их оснований не делится , что и требовалось доказать .

4. Сумма одинаковых нечётных натуральных степеней на сумму их оснований делится без остатка .

Пусть P(x) = x2л+1 , P(-a) = (-a)2л+1 = -а2л+1 ,

тогда P(x) – P(-a) = x2k+1 + a2k+1 – сумма одинаковых нечётных натуральных степеней .

По следствию 5

P(x) - P(-a) = x2k+1 + a2k+1= (x –(- a))Q(x)=

= (x + a)Q(x),

а это значит , что

(x2k+1 + a2k+1)/(x + a) = Q(x) ,

т.е. сумма одинаковых нечётных натуральных степеней на сумму их оснований делится без остатка , что и требовалось доказать .

Итак ,

(x2k+1 + a2k+1)/(x + a) = x2k - ax2k-1 + … - a2k-1x + a2k.

5. Сумма одинаковых чётных натуральных степеней на сумму их оснований не делится .

Пусть P(x) = x2k + a2k– сумма одинаковых чётных степеней .

По теореме Безу при делении x2k + a2k на x + a = x – (-a) остаток равен

R = P(-a) = (-a)2k + a2k = 2a2k.

Т. к. остаток при делении не равен 0 , тосумма одинаковых чётных натуральных степеней на сумму

их оснований не делится, что и требовалось доказать.

Остановимся на рассмотрении некоторых случаев применения теоремы Безу к решению практических задач .

Пример 1.

Найти остаток от деления многочлена

x3 – 3x2 + 6x – 5

на двучлен x – 2 .

По теореме Безу

R = P3 (2) = 23 – 3*22 + 6*2 – 5 = 3 .

Ответ: R = 3 .

Пример 2.

Найти остаток от деления многочлена

32x4 – 64x3 + 8x2 + 36x + 4

на двучлен 2x – 1 .

Согласно следствию 1 из теоремы Безу

R=P4(1/2)=32*1/24–64*1/23 + 8*1/22+36*1/2+4=

= 2 – 8 + 2 + 18 + 4 =18 .

Ответ: R = 18 .

Пример 3.

При каком значении a многочлен

x4 + ax3 + 3x2 – 4x – 4

делится без остатка на двучлен x – 2 ?

По теореме Безу

R = P4 (2) = 16 + 8a + 12 – 8 – 4 = 8a +16.

Но по условию R = 0 , значит

8a + 16 = 0 ,

отсюда

a = -2 .

Ответ: a = -2 .

Пример 4.

При каких значениях a и b многочлен

ax3 + bx2 – 73x + 102

делится на трёхчлен

x2 – 5x + 6 без остатка ?

Разложим делитель на множители :

x2 – 5x + 6 = (x – 2)(x – 3) .

Поскольку двучлены x – 2 и x – 3 взаимно просты , то данный многочлен делится на x – 2 и на x – 3 , а это значит , что

по теореме Безу

R1 = P3 (2) = 8a + 4b – 146 + 102 =

= 8a + 4b – 44 = 0

R2 = P3 (3) = 27a+9b – 219 + 102 =

= 27a +9b -117 =0

Решим систему уравнений :

8a + 4b – 44 = 0

27a + 9b – 117 = 0

2a + b = 11

3a + b = 13

Отсюда получаем :

a = 2 , b = 7 .

Ответ: a = 2 , b = 7 .

Пример 5.

При каких значениях a и b многочлен

x4 + ax3 – 9x2 + 11x + b

делится без остатка на трёхчлен

x2 – 2x + 1 ?

Представим делитель так :

x2 – 2x + 1 = (x – 1)2

Данный многочлен делится на x – 1 без остатка ,

если по теореме Безу

R1 = P4 (1) = 1 + a – 9 + 11 + b = a + b + 3 = 0.

Найдём частное от деления этого многочлена на x – 1 :

_ x4 + ax3–9x2 + 11x–a –3 x – 1

x4 – x3 x3+(a+1)x2+(a–8)x+(a+3)

_(a + 1)x3 – 9x2

(a + 1)x3 – (a + 1)x2

_(a – 8)x2 + 11x

(a – 8)x2 – (a –8)x

_(a + 3)x – a – 3

(a + 3)x – a – 3

0

Частное

x3+(a+1)x2+(a–8)x+(a+3)

делится на (x – 1) без остатка , откуда

R2 = P3 (1) = 1 + (a + 1)*1 +(a – 8)*1 + a+3 =

=3a – 3 = 0 .

a + b + 3 = 0

3a – 3 = 0

a + b =-3

a = 1

Из системы : a = 1 , b = -4

Ответ: a = 1 , b = -4 .

Пример 6.

Разложить на множители многочлен P(x) = x4 + 4x2 – 5 .

Среди делителей свободного члена число 1 является корнем данного многочлена P(x) , а это значит , что по следствию 2 из теоремы Безу P(x) делится на (x – 1) без остатка :

_x4 + 4x2 – 5 x – 1

x4x3x3 + x2 + 5x + 5

_x3 + 4x2 – 5

x3x2

_5x2 – 5

5x2 – 5x

_5x – 5

5x – 5

0

P(x)/(x – 1) = x3 + x2 + 5x + 5 , значит

P(x) = (x – 1)(x3 + x2 + 5x + 5).

Среди делителей свободного члена многочлена x3 + x2 + 5x + 5 x = -1 является его корнем , а это значит , что по следствию 2 из теоремы Безу x3 + x2 + 5x + 5 делится на (x + 1) без остатка :

_x3 + x2 +5x + 5 x + 1

x3 + x2x2 +5

_5x + 5

5x + 5

0

(x3 + x2 +5x + 5)/(x + 1) = x2 +5 ,

значит

x3 + x2 +5x + 5 = (x +1)(x2 +5).

Отсюда

P(x) = (x – 1)(x +1)(x2 +5) .

По следствию 7 (x2 + 5) на множители не раскладывается , т.к. действительных корней не имеет , поэтому P(x) далее на множители не раскладывается .

Ответ : x4 + 4x2 – 5 = (x – 1)(x +1)(x2 +5) .

Пример 7.

Разложить на множители многочлен P(x) = x4 + 324 .

P(x) корней не имеет , т.к. x4 не может быть равен -324 , значит , по следствию 7 P(x) на множители не раскладывается .

Ответ : многочлен на множители не раскладывается .

Пример 8.

Какую кратность имеет корень 2 для многочлена

P(x) = x5 - 5x4 + 7x3 – 2x2 + 4x – 8 .

Определение: Если многочлен P(x) делится без остатка на (xa)k , но не делится на (xa)k+1 , то говорят , что число a является корнем кратности k для P(x).

_x5 - 5x4 + 7x3 – 2x2 + 4x – 8 x – 2

x5 - 2x4x4 – 3x3 + x2 + 4

_-3x4 + 7x3 – 2x2 + 4x – 8

-3x4 + 6x3

_x3 – 2x2 + 4x – 8

x3 – 2x2

_4x – 8

4x – 8

0

_x4 – 3x3 + x2 + 4 x – 2

x4 – 2x3 x3 – x2 – x – 2

_-x3 + x2 + 4

-x3 +2x2

_-x2 + 4

-x2 + 2x

_-2x + 4

-2x + 4

0

_ x3 – x2 – x – 2 x – 2

x3 – 2x2 x2 + x + 1

_x2 – x – 2

x2 – 2x

_x – 2

x – 2

0

x2 + x + 1 на x – 2 не делится , т.к. R=22 + 2 + 1=

=7.

Значит , P(x)/(x – 2)3 = x2 + x + 1 , т.е. корень 2 имеет кратность 3 для многочлена P(x) .

Ответ: корень 2 имеет кратность 3 для многочлена P(x) .

Пример 9.

Составить кубический многочлен , имеющий корень 4 кратности 2 и корень -2 .

По следствию 3 , если многочлен P(x) имеет корень 4 кратности 2 и корень –2 , то он делится без остатка на (x – 4)2(x + 2) , значит

P(x)/(x – 4)2(x + 2) = Q(x) ,

т.е. P(x) = (x – 4)2(x + 2)Q(x) =

= (x2 – 8x +16)(x + 2)Q(x) =

= (x3 – 8x2 + 16x +2x2 – 16x + 32)Q(x) =

= (x3 – 6x2 + 32)Q(x).

(x3 – 6x2 + 32) - кубический многочлен , но по условию P(x) – также кубический многочлен, следовательно , Q(x) – некоторое действительное число .

Пусть Q(x) = 1 , тогда P(x) = x3 – 6x2 + 32 .

Ответ: x3 – 6x2 + 32 .

Пример 10.

Определите a и b так , чтобы -2 было корнем многочлена P(x) = x5 + ax2 + bx + 1, имеющим по крайней мере кратность два .

Если -2 – корень многочлена P(x) кратности два , то по следствию 3 P(x) делится на (x + 2)2 без остатка (R = 0)

(x + 2)2 = x2 + 4x + 4

_x5 + ax2 + bx + 1 x2 + 4x + 4

x5 + 4x4 + 4x3 x3 – 4x2 + 12x – (a + 32)

_-4x4–4x3–ax2+bx+1

-4x4 – 16x3 – 16x2

_12x3 + (16 – a)x2 + bx + 1

12x3 +48x2 + 48x

_-(a + 32)x2 + (b – 48)x + 1

-(a + 32)x2 – 4(a + 32)x – 4(a + 32)

(4a +b – 48 + 128)x + 4a + 129

R = (4a +b – 48 + 128)x + 4a + 129 =

= (4a +b + 80)x + 4a + 129

НоR = 0, значит

(4a +b + 80)x + 4a + 129 = 0 прилюбыхx .

Это возможно при условии , что

4a +b + 80 = 0 ,

4a + 129 = 0

Решим систему двух уравнений :

4a +b + 80 = 0 a = -32,25

4a + 129 = 0 b = 49

Ответ: a = -32,25 , b = 49 .

Из рассмотренных примеров видно , что теорема Безу находит применение при решении задач , связанных с делимостью многочленов (нахождение остатка при делении многочленов , определение кратности многочленов и т.д. ) , с разложением многочленов на множители , с определением кратности корней и многих других .

Теорема Безу находит применение при рассмотрении одной из важнейших задач математики – решении уравнений .

Литература.

1. Бородин А.И., Бугай А.С.

Биографический словарь деятелей в области математики.

2. Математическая энциклопедия.

3. Яремчук Ф.П., Рудченко П.А.

Алгебра и элементарные функции.

4. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварц- бурд С.И.

Алгебра и математический анализ.

5. Курош А.Г.

Курс высшей алгебры.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 096 оценок star star star star star
среднее 4.9 из 5
РАНХиГС
Срок был очень сжатый, но Анна справилась даже раньше. Спасибо огромное!
star star star star star
СПБГТИ
Спасибо большое Маргарите. Очень отзывчивая девушка, на все замечания реагирует молниеносно)
star star star star star
СПбУТУиЭ
Спасибо огромное! Работу нужно было сдать срочно, максимум на следующий день. Ольга выполн...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решение задач по предмету «Математика»

Решение задач, Математика

Срок сдачи к 29 дек.

1 минуту назад

Отчет с выполнением заданий

Решение задач, Отчет, бух учет

Срок сдачи к 25 дек.

4 минуты назад

Расчет параметров участка электроэнергетической системы

Решение задач, Электрические системы, электроника, электротехника

Срок сдачи к 8 янв.

4 минуты назад
4 минуты назад

Сделать курсач по методике

Курсовая, Электротехника

Срок сдачи к 26 дек.

5 минут назад

Психология безопасности труда

Реферат, Русский язык и культура речи

Срок сдачи к 29 дек.

7 минут назад

Сделать реферат и презентацию

Презентация, Биомеханика

Срок сдачи к 25 дек.

7 минут назад

написать курсовую работу по уголовному праву

Курсовая, Уголовное право

Срок сдачи к 25 дек.

7 минут назад

Начертить 12 чертежей

Чертеж, Начертательная геометрия

Срок сдачи к 9 янв.

8 минут назад

Феномен успеха и успешность в профессиональном развитии

Реферат, Психология

Срок сдачи к 28 дек.

9 минут назад

В файле прикреплен пример выполнения задания

Контрольная, Криминология

Срок сдачи к 27 дек.

9 минут назад

9-11 страниц. правовые основы военной реформы в ссср в 20-е гг

Реферат, История государства и права России

Срок сдачи к 26 дек.

10 минут назад

Выполнить реферат. История Англии. Е-01554

Реферат, Английский язык

Срок сдачи к 26 дек.

10 минут назад

Составить Проект массового взрыва

Контрольная, Взрывное дело, горное дело

Срок сдачи к 8 янв.

12 минут назад

Термодинамика

Решение задач, Термодинамика

Срок сдачи к 26 дек.

12 минут назад

Нужен реферат, объем 15-20 страниц

Реферат, Безопасность в техносфере

Срок сдачи к 5 янв.

12 минут назад

Выполнить реферат. История Англии. Е-01554

Реферат, История

Срок сдачи к 26 дек.

12 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно