Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Простые числа Мерсенна. Совершенные числа

Тип Реферат
Предмет Математика
Просмотров
1173
Размер файла
15 б
Поделиться

Ознакомительный фрагмент работы:

Простые числа Мерсенна. Совершенные числа

Простые Числа Мерсенна, совершенные числа.

Среди простых чисел особую роль играют простые числа Мерсенна - числа вида 1)Мр = 2р -1 , где р - простое число. Они называются простыми числами Мерсенна по имени французского монаха Мерена Мерсенна (1588-1648), одного из основателей Парижской Академии наук, друга Декарта и Ферма. Так как М2=3, М3=7, М5=31, М7=127, то это - простые числа Мерсенна. Однако, число 2)М11=2047=23 .89 простым не является. До 1750 года было найдено всего 8 простых чисел Мерсенна: М2, М3, М5, М7, М13, М17, М19, М31. То, что М31- простое число, доказал в 1750 году Л. Эйлер. В 1876 году французский математик Эдуард Люка

установил, что число

3)М127=170141183460469231731687303715884105727

- простое. В 1883 г. Сельский священник Пермской губернии И.М.Первушин без всяких вычислительных приборов доказал, что число М61=2305843009213693951 является простым. Позднее было установлено, что числа М89и М107- простые. Использование ЭВМ позволило в 1952-1964 годах доказать, что числа М521, М607, М1279, М2203, М2281, М3217, М4253, М4423, М2689, М9941, М11213 - простые. К настоящему времени известно уже более 30 простых чисел Мерсенна, одно из которых М216091 имеет 65050 цифр. Большой интерес к простым числам Мерсенна вызван их тесной связью с совершенными числами.

Натуральное число Р называется совершенным, если оно равно сумме всех своих делителей кроме Р.

Евклид доказал, что если р и 2р-1 - простые числа, то число 4)Рр=2р-1(2р-1)=2р-1Мрявляется совершенным.

Действительно, делителями такого числа, включая само это число, являются 5)1,2, ... ,2р-1р,2Мр, ... ,2р-1Мр.

Их сумма Sp=(1+2+ ... +2р-1)(Мр+1)=(2р-1) . 2р=2 . 2р-1 Мр. Вычитая из S само число Рр , убеждаемся, что сумма всех делителей числа Рр равна этому числу, следовательно Рр - совершенное число.

Числа Р2=6 и Р3=28 были известны ещё пифагорейцам. Числа Р5=496 и Р7=8128 нашел Евклид. Используя другие простые числа Мерсенна и формулу 4, находим следующие совершенные числа:

6)Р13=33550336, Р17=8589869056, Р19=137438691328,Р31=2305843008139952128.

Для всех остальных чисел Мерсенна числа Рримеют очень много цифр.

До сих пор остаётся загадкой, как Мерсенн смог высказать правильное утверждение, что числа Р17, Р19, Р31являются совершенными. Позднее было обнаружено, что почти за сто лет до Мерсенна числа Р17, Р19нашел итальянский математик Катальди - профессор университетов Флоренции и Болоньи. Считалось, что божественное провидение предсказало своим избранникам правильные значения этих совершенных чисел. Если учесть, что ещё пифагорейцы считали первое совершенное число 6 символом души, что второе совершенное число 28 соответствовало числу членов многих учёных обществ, что даже в двенадцатом веке церковь учила: для спасения души достаточно изучать совершенные числа и тому, кто найдёт новое божественное совершенное число, уготовано вечное блаженство, то становится понятным исключительный интерес к этим числам.

Однако и с математической точки зрения чётные совершенные числа по-своему уникальны.Все они - треугольные. Сумма величин, обратных всем дилителям числа, включая само число, всегда равна двум. Остаток от деления совершенного числа, кроме 6, на 9 равен 1. В двоичной системе совершенное число Рр начинается р единицами, потом следуют р-1 нулей. Например:

7)Р2=110, Р3=11100, Р5 =111110000, Р7 =1111111000000 и т.д.

Последняя цифра чётного совершенного числа или 6, или 8, причём, если 8, то ей предшествует 2.

Леонард Эйлер доказал, что все чётные совершенные числа имеют вид 2р-1 . Мр, где Мр-простое число Мерсенна. Однако до сих пор не найдено ни одного нечётного совершенного числа. Высказано предположение(Брайен Такхерман,США), что если такое число существует, то оно должно иметь не менее 36 знаков.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156492
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
64 368 оценок star star star star star
среднее 4.9 из 5
ФГБО ВО БрГУ
Анна, большая молодец, заказ выполнен досрочно и без замечаний, рекомендую
star star star star star
РГЭУ РИНХ
Очень хороший реферат, было все подробно описано. в общем то что надо! спасибо)
star star star star star
РТА СПБ
Огромное спасибо за качественно выполненную работу и оформленную в соответствии с требован...
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Выполнить контрольную по Английскому. С-07505

Контрольная, Английский язык

Срок сдачи к 17 янв.

только что

Тема: Воспитание дружеских взаимодействий дошкольников

Курсовая, Педагогика

Срок сдачи к 16 янв.

1 минуту назад

Выполнение 6 работ в программе Statistica

Контрольная, Программные статистические комплексы

Срок сдачи к 20 февр.

1 минуту назад

Решить 3 задачи.

Решение задач, Физика

Срок сдачи к 22 янв.

1 минуту назад
1 минуту назад

Контрольная под дисциплине Механика жидкости и газа

Контрольная, Механика жидкости и газа

Срок сдачи к 20 янв.

1 минуту назад

Производственная практика

Отчет по практике, Психология и педагогика

Срок сдачи к 18 янв.

2 минуты назад
2 минуты назад

Выполнить контрольную по Английскому. С-07504

Контрольная, Английский язык

Срок сдачи к 17 янв.

2 минуты назад

Решить задачи

Решение задач, Международное право

Срок сдачи к 16 янв.

2 минуты назад

Написать отзыв по статье на 1,5-2 листа

Другое, Дефектология

Срок сдачи к 18 янв.

3 минуты назад

Контрольная работа "Расчёт теплопритоков в охлаждаемую камеру"

Контрольная, Теплотехника и хладотехника

Срок сдачи к 19 янв.

4 минуты назад

3 задачи

Решение задач, Теоретическая механика

Срок сдачи к 18 янв.

4 минуты назад

Теплофизика

Решение задач, Теплофизика

Срок сдачи к 15 янв.

5 минут назад

Лабораторная работа № 1.1 Модуль: Основы логического мышления

Решение задач, Введение в специальность, логика

Срок сдачи к 15 янв.

5 минут назад

Том каулитц

Контрольная, Математика

Срок сдачи к 18 янв.

6 минут назад

сделать лабораторные работы

Лабораторная, Цифровая культура в профессиональной деятельности, культурология

Срок сдачи к 25 янв.

6 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно