Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Распределение случайной величины Эмпирические линии регрессии

Тип Реферат
Предмет Математика
Просмотров
720
Размер файла
116 б
Поделиться

Ознакомительный фрагмент работы:

Распределение случайной величины Эмпирические линии регрессии

Контрольная работа № 1

Задача 1

Рабочие обслуживают три станка, на которых обрабатывается однотипные детали. Вероятность изготовления бракованной детали на первом станке равна 0,2, на втором – 0,3, на третьем – 0,4. Обработанные детали складываются в один ящик. Производительность первого станка в три раза больше чем второго, а третьего – в два раза меньше чем второго. Взятая на удачу деталь оказалась бракованной. Найти вероятность того, что она изготовлена на третьем станке.

Решение:

Событие А – взятая деталь оказалась бракованной. Деталь может быть изготовлена на первом, втором или третьем станке, обозначим через В1, В2 и В3. Соответственно Р(В1) = , Р(В2) = , Р(В3) = .

Условная вероятность того, что бракованная деталь изготовлена первым станком РВ1(А) = 0,02, аналогично РВ2(А) = 0,03 и РВ3(А) = 0,04.

По формуле полной вероятности

Р(А) =

По формуле Бейеса

Ответ: РА3) = 0,1818


Задача 2

Каждая из пяти упаковок тетрадей содержит две тетради в линейку и три в клетку. Из каждой упаковки случайным образом отбираются по две тетради. Найти вероятность того, что не менее чем в трех из отобранных пяти пар тетрадей обе тетради будут в клетку.

Решение:

Вероятность взять 2 тетради в клетку из пачки

Р = .

Не менее трех пар из пяти отобранных должны быть – 3 пары, 4 пары, 5 пар.

Вычислим

Р5(3) + Р5(4) + Р5(5).

Pn(k) = ,

где р = 0,3 и q = 0,7.

Р5(3) = 0,1323

Р5(4) = 0,0284

Р5(5) = 0,0024

Искомая вероятность равна 0,1323 + 0,0284 + 0,0024 = 0,1631

Ответ: 0,1631

Задача 3

Вероятность того, что договор страховой кампании завершится выплатой по страховому случаю, равна 0,1. Страховая кампания заключила 2000 договоров. Найти вероятность того, что страховой случай наступит: а) 210 раз; б) от 190 до 250 раз включительно.

Решение:

а) Используем локальную теорему Лапласа, где k = 210, р = 0,1 и q = 0,9.

Pn(k) = , где =

Р2000(210) =

б) Используем интегральную теорему Лапласа, где n = 2000, k2 = 250, k1 = 190.

Pn(k1;k2) = F(x’’) - F(x’),

х’’ = .

х’ = .

F(x’’) = F(3,73) = 0,4999.

F(x’) = F(-0,75) = - 0,2764.

P2000(190;250) = 0,4999 + 0,2764 = 0,7763/

Ответ: а) Р2000(210) = 0,0224, б) Р2000(190;250) = 0,7763

Задача 4

Законное распределение независимых случайных величин Х и У имеют вид:


Х:

xi

0

1

2

pi

0,3

?

0,2

Y:

yi

1

2

pi

0,4

?

Найти вероятность P(X = 1), P(Y = 2).

Составить закон распределения случайной величины

Z = X*Y.

Проверить выполнение свойства математического ожидания:

M(Z) = M(X)*M(Y)

Решение:

Р(Х = 1) = 1 – (0,3 + 0,2) = 0,5

Р(Y = 2) = 1 – 0,4 = 0,6

Составим закон распределения случайной величины Z = X*Y

xj

0

1

2

yi

pj

pi

0,3

0,5

0,2

1

0,4

0

0,12

1

0,2

2

0,08

2

0,6

0

0,18

20,3

4

0,12

zi

0

1

2

4

pi

0,3

0,2

0,38

0,12

Spi = 0,3 + 0,2 + 0,38 + 0,12 = 1

M(Z) = 0*0,3 + 1*0,2 + 2*0,38 + 4*0,12 = 1,44

M(X) = 0*0,3 + 1*0,5 + 2*0,2 = 0,9

M(Y) = 1*0,4 + 2*0,6 = 1,6

M(Z) = M(X)*M(Y) = 0,9*1,6 = 1,44.

Ответ:

Zi

0

1

2

4

Pi

0,3

0,2

0,38

0,12

Задача 5

Функции распределения непрерывной случайной величины Х имеет вид:


0 при х < -1,

F(x) = (х + 1)2 при -1 £ х £ 0,

1 при х > 0.

Найти математическое ожидание этой случайной величины и вероятность того, что при каждом из трех независимых наблюдений этой случайной величины будет выполнено условие .

Решение:

Найдем плотность распределения


0 при х < -1,

f(x) = F’(x) = 2(x + 1) при -1 £ х £ 0,

1 при х > 0.


М(х) =

- математическое ожидание.

Р(х £ ) = Р( -1 £ х < ) = F() – F( -1) =

Ответ: М(х) = и Р(х < ) =

Контрольная работа № 4

Задача 1

При выборочном опросе ста телезрителей, пользующихся услугами спутникового телевидения, получены следующие результаты распределения их по возрасту

Возраст (лет)

Менее 20

20 – 30

30 – 40

40 – 50

50 – 60

60 – 70

Более 70

Итого

Количество пользователей (чел.)

8

17

31

40

32

15

7

150

Найти:

а) Вероятность того, что средний возраст телезрителей отличается от среднего возраста, полученного по выборке, не более чем на два года (по абсолютной величине);

б) Границы, в которых с вероятностью 0,97 заключена доля телезрителей, возраст которых составляет от 30 до 50 лет;

в) Объем бесповторной выборки, при котором те же границы для доли можно гарантировать с вероятностью 0,9876; дать ответ на тот же вопрос, если никаких предварительных сведений о доле нет.

Решение:

Вычислим среднюю арифметическую и дисперсию распределения. Величина интервала k = 10 и с = 45, середина пятого интервала. Вычислим новые варианты в рабочей таблице:

i

[xi;xi+1]

xi

ui

ni

ui;ni

u2i;ni

ui +1

(ui + 1)ni

1

10 – 20

15

-3

8

-24

72

-2

32

2

20 – 30

25

-2

17

-34

68

-1

17

3

30 – 40

35

-1

31

-31

31

0

0

4

40 – 50

45

0

40

0

0

1

40

5

50 – 60

55

1

32

32

32

2

128

6

60 – 70

65

2

15

30

60

3

135

7

70 – 80

75

3

7

21

63

4

112

S

315

0

150

-6

326

7

464

a) Найдем среднюю квадратическую ошибку бесповторной выборки

Искомая доверительная вероятность

б) Выборочная доля зрителей от 30 до 50 лет

Средняя квадратическая ошибка бесповторной выборки для доли

Из соотношения g = Ф(t) = 0,97; t = 2,17

Предельная ошибка выборки для доли D = 2,17*0,0376 = 0,08156

Искомый доверительный интервал

0,4733 – 0,08156 £ р £ 0,4733 + 0,08156

0,3918 £ р £ 0,5549

в) Учитывая g = Ф(t) = 0,3876; t = 2,5

человек.

Если о доле p = w ничего не известно, полагаем (pq)max = 0,25

человек.

Ответ: а) ; б) 0,3918 £ р £ 0,5549 ; в) 190 человек

Задача 2

По данным задачи 1, используя критерий c2 – Пирсона, при уровне значимости, а = 0,5 проверить гипотезу о том, что случайная величина Х – количество телезрителей – распределена по нормальному закону. Построить на одном чертеже гистограмму эмпирического распределения и соответствующую нормальную кривую.

Решение:

Выдвигается гипотеза Н0: случайная величина Х – количество телезрителей – распределена нормально. с параметрами а = 44,6 и d2 = 217,17.

Для расчета рi используем функцию Лапласа

Дальнейшие расчеты покажем в таблице

i

[xi;xi+1]

ni

pi

npi

(ni – npi)

1

10 – 20

8

0,0582

8,7225

0,522

0,0598

2

20 – 30

17

0,1183

17,738

0,5439

0,0307

3

30 – 40

31

0,2071

31,065

0,0042

0,0001

4

40 – 50

40

0,2472

37,073

8,5703

0,2312

5

50 – 60

32

0,2034

30,51

2,2201

0,0728

6

60 – 70

15

0,1099

16,478

2,183

0,1325

7

70 – 80

7

0,0517

7,755

0,57

0,0735

S

150

0,9956

149,34

0,6006

Фактическое значение c2 = 0,6006 Соотносим критическое значение c20,05;4 = 9,49 k = m – r – 1 = 7 – 2 – 1 = 4.

Так как c2 < c20,05;4, гипотеза Н0 согласуется с опытными данными. Выполним построение:


Ответ: Гипотеза о выбранном теоретическом нормальном законе N (44,6; 217,17) согласуется с опытными данными.

Задача 3

Распределение 50 однотипных малых предприятий по основным фондам Х (млн., руб.) и себестоимости выпуска единицы продукции. У (тыс., руб.) представлено в таблице:

у

х

1,25

1,5

1,75

2,0

2,25

Итого

80 – 130

1

2

3

6

130 – 180

1

4

3

8

180 – 230

4

8

3

1

16

230 – 280

2

5

4

11

280 – 330

3

4

2

9

Итого:

5

3

16

9

7

50

Необходимо:

1. Вычислить групповые средние xj и yi и построить эмпирические линии регрессии.

2. Предполагая, что между переменными Х и Y существует линейная корреляционная зависимость:

а) найти уравнение прямых регрессий и построить их графики на одном чертеже с эмпирическими линиями регрессии;

б) вычислить коэффициент корреляции на уровне значимости, а=0,05, оценить его значимость и сделать вывод о тесноте и направлении связи между переменными Х и Y;

в) используя соответствующие уравнения регрессии, определить количество выпускаемой продукции при стоимости одной единицы продукции, равной 2,5 тыс., руб.

Решение:

1) Составим корреляционную таблицу

х

у

xi

1,25

1,5

1,75

2

2,25

ni

уi

80 – 130

105

1

2

3

6

2,0833

130 – 180

155

1

4

3

8

2,0625

180 – 230

205

4

8

3

1

16

1,7656

230 – 280

255

2

5

4

11

1,5456

280 – 330

305

3

4

2

9

1,4722

nj

5

13

16

9

7

50

xj

285

255

220,63

160,56

140,71

Построим эмпирические линии регрессии

2) Предположим, что между переменными Х и Y существует линейная корреляционная зависимость;

а) Вычислим среднее значение


Найдем уравнение

ух = byx(x – x) + y,

где byx =

ух = - 0,0036(х – 214) + 1,75

ух = - 0,0036х + 2,5105

ху - х = byx(у – у),

где bху =

ху = - 157,14(х – 1,75) + 214

ху = - 157,14х + 489

б) Коэффициент корреляции


связь обратная и тесная;

Статистика критерия

При а = 0,05 и k = 48; t0,05;48 = 2,01, так как t > t0,05;48 коэффициент значительно отличается от 0.

в) Используя ху = - 157,14у + 489

х = - 157,14*2,5 + 489 = 96,14

Ответ: а) ух = - 0,0036х + 2,5105; ху = - 157,14х + 489.

б) k = - 0,7473.

в) х = 96,14 при у = 2,5


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Филиал государственного бюджетного образовательного учреждения высшего образования Московской област
Спасибо Елизавете за оперативность. Так как это было важно для нас! Замечаний особых не бы...
star star star star star
РУТ
Огромное спасибо за уважительное отношение к заказчикам, быстроту и качество работы
star star star star star
ТГПУ
спасибо за помощь, работа сделана в срок и без замечаний, в полном объеме!
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

решить 6 практических

Решение задач, Спортивные сооружения

Срок сдачи к 17 дек.

только что

Задание в microsoft project

Лабораторная, Программирование

Срок сдачи к 14 дек.

только что

Решить две задачи №13 и №23

Решение задач, Теоретические основы электротехники

Срок сдачи к 15 дек.

только что

Решить 4задачи

Решение задач, Прикладная механика

Срок сдачи к 31 дек.

только что

Выполнить 2 задачи

Контрольная, Конституционное право

Срок сдачи к 12 дек.

2 минуты назад

6 заданий

Контрольная, Ветеринарная вирусология и иммунология

Срок сдачи к 6 дек.

4 минуты назад

Требуется разобрать ст. 135 Налогового кодекса по составу напогового...

Решение задач, Налоговое право

Срок сдачи к 5 дек.

4 минуты назад

ТЭД, теории кислот и оснований

Решение задач, Химия

Срок сдачи к 5 дек.

5 минут назад

Решить задание в эксель

Решение задач, Эконометрика

Срок сдачи к 6 дек.

5 минут назад

Нужно проходить тесты на сайте

Тест дистанционно, Детская психология

Срок сдачи к 31 янв.

6 минут назад

Решить 7 лабораторных

Решение задач, визуализация данных в экономике

Срок сдачи к 6 дек.

7 минут назад

Вариационные ряды

Другое, Статистика

Срок сдачи к 9 дек.

8 минут назад

Школьный кабинет химии и его роль в химико-образовательном процессе

Курсовая, Методика преподавания химии

Срок сдачи к 26 дек.

8 минут назад

Вариант 9

Решение задач, Теоретическая механика

Срок сдачи к 7 дек.

8 минут назад

9 задач по тех меху ,к 16:20

Решение задач, Техническая механика

Срок сдачи к 5 дек.

9 минут назад
9 минут назад
10 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно