Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Численные методы решения обыкновенных дифференциальных уравнений

Тип Реферат
Предмет Математика
Просмотров
1487
Размер файла
100 б
Поделиться

Ознакомительный фрагмент работы:

Численные методы решения обыкновенных дифференциальных уравнений

Лабораторная работа 1

Численные методы решения

обыкновенных дифференциальных уравнений (4 часа)

При решении многих физических и геометрических задач приходится искать неизвестную функцию по данному соотношению между неизвестной функцией, ее производными и независимыми переменными. Такое соотношение называется дифференциальным уравнением, а отыскание функции, удовлетворяющей дифференциальному уравнению, называется решением дифференциального уравнения.

Обыкновенным дифференциальным уравнением называется равенство

, (1)

в котором - независимая переменная, изменяющаяся в некотором отрезке , а - неизвестная функция y(x) и ее первые n производные.

Число называется порядком уравнения.

Задача заключается в нахождении функции y, удовлетворяющей равенству (1). Более того, не оговаривая это отдельно, будем предполагать, что искомое решение обладает той или иной степенью гладкости, необходимой для построения и «законного» применения того или иного метода.

Различают два типа обыкновенных дифференциальных уравнений

- уравнения без начальных условий

- уравнения с начальными условиями.

Уравнения без начальных условий - это уравнение вида (1).

Уравнение с начальными условиями - это уравнение вида (1), в котором требуется найти такую функцию , которая при некотором удовлетворяет следующим условиям:

,

т.е. в точке функция и ее первые производных принимают наперед заданные значения.

Задачи Коши

При изучении способов решения дифференциальных уравнений приближенными методами основной задачей считается задача Коши.

Рассмотрим наиболее популярный метод решения задачи Коши – метод Рунге-Кутта. Этот метод позволяет строить формулы расчета приближенного решения практически любого порядка точности.

Выведем формулы метода Рунге-Кутта второго порядка точности. Для этого решение представим куском ряда Тейлора, отбрасывая члены с порядком выше второго. Тогда приближенное значение искомой функции в точке x1 можно записать в виде:

(2)

Вторую производную y"(x0) можно выразить через производную функции f(x,y), однако в методе Рунге-Кутта вместо производной используют разность

соответственно подбирая значения параметров

Тогда (2) можно переписать в виде:

y1=y0 + h [β f(x0,y0) + α f(x0 + γh, y0 + δh)], (3)

где α, β, γ и δ – некоторые параметры.

Рассматривая правую часть (3) как функцию аргумента h , разложим ее по степеням h:

y1=y0 +( α+ β) h f(x0,y0) + αh2[γ fx(x0, y0) + δ fy(x0, y0)],

и выберем параметры α, β, γ и δ так, чтобы это разложение было близко к (2). Отсюда следует, что

α + β =1, αγ=0,5, α δ =0,5 f(x0,y0).

С помощью этих уравнений выразим β, γ и δ через параметры α, получим

y1=y0 +h[(1 - α) f(x0,y0) + α f(x0+, y0+f(x0, y0)], (4)

0 < α ≤ 1.

Теперь, если вместо (x0,y0) в (4) подставить (x1,y1), получим формулу для вычисления y2 приближенного значения искомой функции в точке x2.

В общем случае метод Рунге-Кутта применяется на произвольном разбиении отрезка [x0,X] на n частей, т.е. с переменным шагом

x0, x1, …,xn; hi = xi+1 – xi, xn = X. (5)

Параметры α выбирают равными 1 или 0,5. Запишем окончательно расчетные формулы метода Рунге-Кутта второго порядка с переменным шагом для α =1:

yi+1=yi +hi f(xi +, yi+f(xi, yi)), (6.1)

i = 0, 1,…, n-1.

и α =0,5:

yi+1=yi + [f(xi , yi) + f(xi+ hi, yi+ hi f(xi , yi))], (6.2)

i = 0, 1,…, n-1.

Наиболее употребляемые формулы метода Рунге-Кутта – формулы четвертого порядка точности:

yi+1=yi +(k1+ 2k2+ 2k3+ k4),

k1=f(xi, yi), k2= f(xi +, yi+k1), (7)

k3= f(xi +, yi+k2), k4= f(xi +h, yi+hk3).

Для метода Рунге-Кутта применимо правило Рунге для оценки погрешности. Пусть y(x; h) – приближенное значение решения в точке x, полученное по формулам (6.1), (6.2) или (7) с шагом h, а pпорядок точности соответствующей формулы. Тогда погрешность R(h) значения y(x; h) можно оценить, используя приближенное значение y(x; 2h) решения в точке x, полученное с шагом 2h:

(8)

где p=2 для формул (6.1) и (6.2) и p=4 для (7).

Уточненное решение пишем в виде

. (9)

В алгоритмах с автоматическим выбором шага предварительно задают погрешность в виде положительного параметра ε, и на каждом этапе вычисления следующего значения yi+1 подбирают такой шаг h, при котором выполняется неравенство

, (10)

Метод Рунге-Кутта применим и к задаче Коши для системы m дифференциальных уравнений первого порядка с m неизвестными функциями

x (x0, X), (11)

y1(x0)=y1,0, y2(x0)=y2,0,…, ym(x0)=ym,0 . (12)

Приведем для задачи (11), (12) расчетные формулы метода Рунге-Кутта четвертого порядка. Пусть требуется найти систему m функций y1(x), y2(x),…, ym(x), удовлетворяющих в интервале (x0, X) дифференциальным уравнениям (11), а в точке x0 – начальным условиям (12). Предположим, что отрезок [x0, X] разбит на N частей:

xi= x0+ i hi,

Тогда каждую l-ю функцию yl(x) можно приближенно вычислять в точках xi+1 по формулам Рунге-Кутта

Kl,1=fl(xi, y1,i, y2,i,…,ym,i), i=1, 2, …, m,

Kl,2=fl(xi + , y1,i + K1,1, y2,i + K2,1,…,ym,i + Km,1), i=1, 2, …, m,

Kl,3=fl(xi + , y1,i + K1,2, y2,i + K2,2,…,ym,i + Km,2), i=1, 2, …, m, (13)

Kl,4=fl(xi + h, y1,i + hK1,3, y2,i + hK2,3,…,ym,i + hKm,3), i=1, 2, …, m,

Yl,i+1 = yl,i +( Kl,1 + 2 Kl,2 + 2 Kl,3 + Kl,4), i=1, 2, …, m,

Здесь через yl,i обозначается приближенное значение функции yl(x) в точке xi .

Обратите внимание на порядок вычислений по формулам (13). На каждом шаге сначала вычисляются коэффициенты Kl,i в следующем порядке:

K1,1, K2,1,…, Km,1,

K1,2, K2,2,…, Km,2,

K1,3, K2,3,…, Km,3,

K1,4, K2,4,…, Km,4,

и лишь затем приближенные значения функций y1,i+1, y2,i+1,…, ym,i+1.

Задачи Коши для дифференциальных уравнений n-го порядка

y(n)=f(x, y, y', …, y(n-1)), x (x0, X), (14)

y(x0)=y0, y'(x0)=y1,0, …, y(n-1)(x0)=yn-1,0 (15)

сводятся к задаче Коши для системы дифференциальных уравнений первого порядка с помощью замены переменных

z0= y, z1= y',…, zn-1= y(n-1). (16)

Учитывая (16), из уравнения (14) получим систему дифференциальных уравнений

(17)

Начальные условия (15) для функций zl переписываются в виде

z0(x0)= y0, z1(x0)= y1,0,…, zn-1(x0)= yп-1,0. (18)

Запишем для полученной системы метод Рунге-Кутта:

zl,i+1= zl,i +(Kl,1+ 2Kl,2+ 2Kl,3+ Kl,4), (19)

i=0, 1, …, N, l=0, 1, …, n-1.

Для вычисления коэффициентов Kl,1, Kl,2, Kl,3 и Kl,4 имеем следующие формулы:

K0,1=z1,i,

K1,1=z2,i,

…………

Kn-1,1= f(xi, z0,i, z1,i,…, zn-1,i,),

K0,2= z1,i+ K1,1,

K1,2= z2,i+ K2,1,

…………………

Kn-1,2= f(xi+ , z0,i+ K0,1, z1,i+ K1,1,…, zn-1,i+ Kn-1,1),

K0,3= z1,i+ K1,2,

K1,3= z2,i+ K2,2,

……………………

Kn-1,3= f(xi+ , z0,i+ K0,2, z1,i+ K1,2,…, zn-1,i+ Kn-1,2),

K0,4= z1,i+ hK1,3,

K1,4= z2,i+ hK2,3,

……………………

Kn-1,4= f(xi+ h, z0,i+ hK0,2, z1,i+ hK1,2,…, zn-1,i+ hKn-1,2).

Задания лабораторной работы 1

1. Написать файл-функции для решения поставленных далее задач.

2. Сохранить их в отдельных m-файлах (среда Матлаб)

3. Выполнить и оформить в виде отчета поставленные далее задачи.

Задача №1. Решить задачу Коши на отрезке [x0,X] методом Рунге-Кутта четвертого порядка, применяя деление отрезка на N частей. Оценить погрешность.

Варианты заданий в табл.1.

Табл.1.

№ варианта

Уравнение

Начальное условие

[x0,X]

N

1

y'(x)=sin(xy2)

y(0)=1

[0,2]

10

2

y'(x)=cos(x) + y2

y(0)=2

[0,2]

20

3

y'(x)= cos(xy2)

y(0)=3

[0,2]

30

4

y'(x)=sin

y(0)=1

[0,2]

40

5

y'(x)=tg

y(0)=2

[0,2]

50

6

y'(x)=x + y2

y(1)=3

[1,2]

10

7

y'(x)=

y(1)=1

[1,2]

20

8

y'(x)=cos

y(1)=2

[1,2]

30

9

y'(x)=sin (x)

y(1)=3

[1,2]

40

10

y'(x)=

y(1)=1

[1,2]

50

11

y'(x)=x ln(1+y2)

y(1)=2

[1,3]

10

12

y'(x)=y cos(x+y2)

y(1)=3

[1,3]

20

13

y'(x)=ex x+y2

y(1)=1

[1,3]

30

14

y'(x)=sin(x(1+y2))

y(1)=2

[1,3]

40

15

y'(x)=lg

y(1)=3

[1,3]

50

16

y'(x)=x+y2 3x

y(-1)=1

[-1,1]

10

17

y'(x)=|x-y|(1+x2+y2)

y(-1)=2

[-1,1]

20

18

y'(x)=

y(-1)=3

[-1,1]

30

19

y'(x)=x+

y(-1)=1

[-1,1]

40

20

y'(x)=

y(-1)=2

[-1,1]

50

21

y'(x)=

y(0)=3

[0,π]

10

22

y'(x)=sin(x) ln(1+y2)

y(0)=1

[0,π]

20

23

y'(x)=sin(y) cos(x+y2)

y(0)=2

[0,π]

30

24

y'(x)=ex sin(y)+x2 ey

y(0)=3

[0,π]

40

25

y'(x)= cos(x) (x+y2)

y(0)=1

[0,π]

50

26

y'(x)=

y(π/2)=2

[π/2,π]

10

27

y'(x)=x 2y+y 2x

y(π/2)=1

[π/2,π]

20

28

y'(x)= |x - y| cos(x2 + y2)

y(π/2)=3

[π/2,π]

30

29

y'(x)=

y(π/2)=2

[π/2,π]

40

30

y'(x)=(y + x )

y(π/2)=3

[π/2,π]

50

Задача №2. Решить задачу Коши для дифференциального уравнения сведением к задачи Коши для системы уравнений первого порядка.

Табл.2.

№ варианта

Дифференциальное уравнение

Начальное условие

[x0,X]

N

1

y(x)=x y(x)+ sin(x)

y(0)=1,

y'(0)=2

[0,2]

10

2

y"'(x)=2x2 y(x) y"(x)

y(0)=2,

y'(0)=2,

y"(0)=1

[0,2]

20

3

y"(x) – 3cos(x) y(x)=tg(x)

y(0)=3,

y'(0)=2

[0,2]

30

4

"'y(x)=x y'(x)

y(0)=1,

y'(0)=1,

y"(0)=1

[0,2]

40

5

y"'(x)=-cos(x) y"(x) – y(x) sin(x)

y(0)=2,

y'(0)=2,

y"(1)=1

[0,2]

50

6

y"(x)– sin(x) y(x)=sin(x)

y(1)=3,

y'(1)=1

[1,2]

10

7

y"(x) – 2x2 y(x)=cos(x)

y(1)=1,

y'(1)=1

[1,2]

20

8

y"'(x)=(x – 1) y(x) + x y"(x)

y(1)=2,

y'(1)=1,

y"(1)=1

[1,2]

30

9

y"(x) - sin(x) y(x)=sin3(x)

y(1)=3,

y'(1)=1

[1,2]

40

10

y"'(x)=x y(x) - sin(x) y'(x)

y(1)=1,

y'(1)=1,

y"(1)=1

[1,2]

50

11

y"(x)-cos(x) y(x)=x

y(1)=2,

y'(1)=1

[1,3]

10

12

y"'(x) – 2x2 y(x)=x2

y(1)=3,

y'(0)=1,

y"(0)=1

[1,3]

20

13

y"(x) - lgx y(x)=2x

y(1)=1,

y'(1)=1

[1,3]

30

14

y"'(x) - 2|sin(x)| y'(x)=3x3

y(1)=2,

y'(1)=1,

y"(1)=1

[1,3]

40

15

y"(x) – 2lnx y(x)=1+x

y(1)=3,

y'(1)=1

[1,3]

50

16

y"'(x) - |cos(x)| y(x)=x

y(-1)=1,

y'(-1)=1,

y"(-1)=1

[-1,1]

10

17

y"(x) - 2|x| y(x)=cos2(x)

y(-1)=2,

y'(1)=1

[-1,1]

20

18

y"'(x) - y(x)=e2x

y(-1)=3,

y'(-1)=1,

y"(-1)=1

[-1,1]

30

19

y"(x) – ln(1+x2) y(x)=sin(2x)

y(-1)=1,

y'(1)=1

[-1,1]

40

20

y"'(x) – sin|x| y(x)=sin(x)

y(-1)=2,

y'(-1)=1,

y"(-1)=1

[-1,1]

50

21

y"(x) - 2y(x)=sin(x)

y(0)=3,

y'(0)=2

[0,π]

10

22

y"'(x)=3y(x)+y"(x) cos(x)

y(0)=1,

y'(0)=1,

y"(0)=1

[0,π]

20

23

y"(x) - 2x y(x)=x3

y(0)=2,

y'(0)=2

[0,π]

30

24

y"'(x) - x y(x)=x4y'(x)

y(0)=3,

y'(0)=1,

y"(0)=1

[0,π]

40

25

y"(x) - 2x2 y(x)=x2

y(0)=1,

y'(0)=2

[0,π]

50

26

y"'(x)=cos(x) y(x)+ex y"(x)

y(2)=2,

y'(2)=1,

y"(2)=1

[2,π]

10

27

y"(x) - 2x2 y(x)=2x ex

y(2)=3,

y'(0)=2

[2,π]

20

28

y"'(x) - 5y"(x)=32x

y(2)=1,

y'(2)=1,

y"(2)=1

[2,π]

30

29

y"(x) - 2sin(x) y(x)=sin(3x)

y(2)=2,

y'(0)=2

[2,π]

40

30

y"'(x) - lnx y'(x)=1

y(2)=3,

y'(2)=1,

y"(2)=1

[2,π]

50

Задача №3.

Найти методом Рунге-Кутта с точностью ε = 10-8 решение задачи Коши y'(x)=2x(1+y2), y(0)=0 в точке x=1.

(Точным решением является функция y(x)=tg(x2))

Задача №4.

Решить методом Эйлера на отрезке [1, 2] задачу Коши

y'(x)= , y(1)=0.

(Точным решением данной задачи является функция y(x)=tg(ln).

Контрольные вопросы:

1. Какое уравнение называется обыкновенным дифференциальным уравнением?

2. Какие методы решения задач для дифференциальных уравнений вы знаете?

3. В каком случае решение дифференциального уравнения единственно?

4. Рассказать правило Рунге для оценки погрешности.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно