Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Построение минимального остовного дерева графа методом Прима

Тип Реферат
Предмет Математика
Просмотров
468
Размер файла
83 б
Поделиться

Ознакомительный фрагмент работы:

Построение минимального остовного дерева графа методом Прима

Пояснительная записка

к курсовому проекту

тема: Построение минимального остовного дерева графа методом Прима


Введение

При проектировании железных дорог, линий электропередачи и других линий коммуникации возникает проблема построения сети с минимальными затратами. В теории графов такая задача успешно решается путем построения минимального остовного дерева неориентированного графа. Данная задача имеет несколько методов решения. Один из них – алгоритм Прима. Суть этого метода заключается в последовательном добавлении к остову минимального, «безопасного» ребра (ребра, которое не образует цикла). В данной работе представлена программа, базирующаяся на алгоритме Прима, которая вычисляет минимальное остовное дерево неориентированного графа и делает визуализацию графа.


1. Историческая справка

Известный алгоритм построения минимального остовного дерева восходит к Войтеху Ярнику (Vojtech Jarnik) [1930]. Он больше известен под именем алгоритма Прима (Robert Prim). Р. Прим независимо от Ярника придумал его в 1956 и представил более подробное и детальное описание, чем первооткрыватель. Еще раз этот алгоритм открыл Эдсгер Дейкстра (Edsger Wybe Dijkstra) в 1958 году, но название осталось за Примом, т. к. у Дейкстры уже был алгоритм с его именем (поиск кратчайших путей в ориентированном графе). Этот алгоритм можно отнести к группе алгоритмов, построенных на наращивании дерева: существует только одна нетривиальная компонента (остальные представляют собой одиночные вершины), и она постепенно наращивается добавлением «безопасных» ребер. Время работы алгоритма Джарника-Прима может достигать O (E+VlogV) при использовании фибоначчиевых куч.

2. Построение минимального остовного дерева

Рассмотрим общую схему работы алгоритмов построения минимального остовного дерева с использованием жадной стратегии. Итак, пусть дан связный неориентированный граф G (V; E) c n вершинами и весовая функция w: ER.

Искомый остов строится постепенно. Алгоритм использует некоторый ациклический подграф А исходного графа G, который называется промежуточным остовным лесом. Изначально G состоит из n вершин-компонент, не соединенных друг с другом (n деревьев из одной вершины). На каждом шаге в A добавляется одно новое ребро. Граф A всегда является подграфом некоторого минимального остова. Очередное добавляемое ребро e=(u, v) выбирается так, чтобы не нарушить этого свойства: A∪ {e} тоже должно быть подграфом минимального. Такое ребро называется безопасным.

Вот как выглядит общий алгоритм построения минимального остовного дерева:

MST-GENERIC (G, w)

1: A ← 0

2: while (пока) A не является остовом

3: do найтибезопасноеребро (u, v) ∈EдляA

4: AA∪ {(u, v)}

5: return A

По определению A, он должен оставаться подграфом некоторого минимального остова после любого числа итераций. Конечно, главный вопрос состоит в том, как искать безопасное ребро на шаге 3. Понятно, что такое ребро всегда существует, если A еще не является минимальным остовом (любое ребро остова, не входящее в A). Заметим, что так как A не может содержать циклов, то на каждом шаге ребром соединяются различные компоненты связности (изначально все вершины в отдельных компонентах, в конце A – одна компонента). Таким образом цикл выполняется (n-1) раз.

Далее приводится общее правило отыскания безопасных ребер. Для этого доказана теорема, которая поможет находить безопасные ребра. Предварительно докажем маленькую лемму:

Лемма: пусть Т – минимальное остовное дерево. Тогда любое ребро е из T – безопасное.

Док-во: в Т – (n-1) ребро. На каждом шаге Generic-MST мы добавляли одно безопасное ребро. Всего выполнено (n-1) шагов, следовательно, все ребра в T – безопасные по определению.

Теорема: Пусть G (V; E) – связный неориентированный граф и на множестве Е определена весовая функция w. Пусть А – некоторый подграф G, являющийся в то же время подграфом некоторого минимального остовного дерева T. Рассмотрим компоненту связности К из А. Рассмотрим множество E(K) ребер графа G, только один конец которых лежит в К. Тогда ребро минимального веса из E(K) будет безопасным.
Док-во: Пусть e=(u, v) – минимальное по весу ребро из E(K). Пусть минимальный остов T не содержит e (в противном случае доказываемое утверждение очевидно по приведенной выше лемме). Т.к. T связен, в нем существует некоторый (единственный) ациклический путь p из u в v, и e замыкает его в цикл. Поскольку один из концов e лежит в K, а другой в V K, в пути p существует хотя бы одно ребро e'=(x, y), которое обладает тем же свойством. Это ребро не лежит в A, т. к. в A пока что нет ребер между K и V K. Удалим из T ребро e' и добавим e. Так как w(e') < w(e), мы получим остовное дерево T', суммарный вес которого меньше суммарного веса T. Таким образом, T не является минимальным остовом. Противоречие. Следовательно, T содержит e.

В связи с приведенной теоремой введем следующее

Определение. Безопасным ребром e относительно некоторой компоненты связности К из А назовем ребро с минимальным весом, ровно один конец которого лежит в К.

3. Алгоритм Прима

Как и алгоритм Краскала, алгоритм Прима следует общей схеме алгоритма построения минимального остовного дерева: на каждом шаге мы добавляем к строящемуся остову безопасное ребро. Алгоритм Прима относится к группе алгоритмов наращивания минимального остова: на каждом шаге существует не более одной нетривиальной (не состоящей из одной вершины) компоненты связности, и каждый к ней добавляется ребро наименьшего веса, соединяющее вершины компоненты с остальными вершинами. По теореме такое ребро является безопасным.

При реализации надо уметь на каждом шаге быстро выбирать безопасное ребро. Для этого удобно воспользоваться очередью с приоритетами (кучей). Алгоритм получает на вход граф G и его корень r – вершина, на которой будет наращиваться минимальный остов. Все вершины G, еще не попавшие в дерево, хранятся в очереди с приоритетом Ω. Приоритет вершины v определяется значением key[v], которое равно минимальному весу ребер, соединяющих v с вершинами минимального остова. Поле p[v] для вершин дерева указывает на родителя, а для вершин из очереди, указывает на ноду дерева, в которою ведет ребро с весом key[v] (одно из таких ребер, если их несколько).

Тогда алгоритм Прима выглядит следующим образом:

MST-PRIM (G, w, r)

1: Ω ← V[G]

2: foreach (для каждой) вершины u∈ Ω

3: do key[u] ← ∞

4: key[r] ← 0

5: p[r] = NIL

6: while (пока) Ω ≠ 0

7: do u ← EXTRACT-MIN(Ω)

8: foreach (для каждой) вершины v∈Adj(u)

9: do if v∈Ωиw (u, v) < key[v] then

10: p[v] ← u

11: key[v] ← w (u, v)

На рисунках 1–8 показана схема работы алгоритма Прима с корнем r.


Рисунок 1 – Начальная фаза. Минимальный покрывающий лес состоит из корня и пустого множества ребер

Рисунок 2 – Ребро с весом 6 является минимальным ребро, соединяющим корень с остальными вершинами. Добавляем его к минимальному остову.

Рисунок 3 – Следующее безопасное ребро с весом 11. Добавляем его


Рис. 4

Рисунок 5

Рисунок 6

Рисунок 7


Рисунок 8 – Ребра с весом 17, 19 и 25 – не безопасные. Их концы лежат в одной компоненте связности. Ребро с весом 21 – безопасное, поэтому добавляем его. Минимальное остовное дерево построено.

Время работы алгоритма Прима зависит от того, как реализована очередь с приоритетами Ω. Если использовать двоичную кучу, инициализацию в строках 1–4 можно выполнить за время O(V). Далее цикл выполняется |V| раз, и каждая операция EXTRACT-MIN занимает время O(VlogV). Цикл for в строках 8–11 выполняется в общей сложности O(E), поскольку сумма степеней вершин графа равна 2|E|. Проверку принадлежности в строке 9 можно выполнить за время O(1), если хранить состояние очереди еще и как битовый вектор размера |V|. Присваивание в строке 11 подразумевает выполнение операции уменьшения ключа (DECREASE-KEY), которая для двоичной кучи может быть выполнена за время O(logV). Таким образом всего получаем O (VlogV+ElogV)=O(ElogV).

Лучшую оценку можно получить, если использовать фибоначчиевы кучи. С помощью фибоначчиевых куч можно выполнить операцию EXTRACT-MIN за учетное время O(logV), а операцию DECREASE-KEY – за учетное время O(1). В этом случае суммарное время работы алгоритма Прима составит O (E+VlogV).

4. Составление программы

алгоритм остовной дерево программа

Интерфейс программы (приложение А, В) должен быть следующим. Сначала пользователь вводит порядок графа, чтобы программа могла сформировать таблицу ввода данных (матрица весов) с соответствующим количеством строк и столбцов. При этом все кнопки, кроме кнопки «Сделать таблицу» недоступны для пользователя. Затем пользователь вводит в таблицу данные, при этом он может оставлять пустые ячейки в таблице. Программа будет интерпретировать это как отсутствие ребра между вершинами. Когда данные будут введены, нужно нажать на кнопку «Рассчитать дерево», которая после создания программой таблицы станет активной. Программа рассчитает матрицу весов для минимального остовного дерева и нарисует искомый граф (длины ребер графа не будут соответствовать матрице весов). При этом таблица ввода и все кнопки, кроме кнопки «Продолжить», станут недоступны для пользователя. При нажатии на эту единственную активную кнопку программа перейдет в исходное состояние.

Теперь о том, как программа реализует алгоритм Прима.

Сначала программа создает некий массив a[10] [10] (предполагается, что число вершин графа меньше или равно 10). Этот массив инициализируется: каждому a[i] [j] присваивается 1000 (предполагается, что максимальная длина ребра меньше 1000). Потом данные из таблицы ввода копируются в массив. При этом если в ячейке таблицы ничего не содержится в массив ничего не копируется. Затем делается цикл, который прерывается только тогда, когда все элементы массива станут снова равны 1000. Как работает цикл? Сначала находится минимальный элемент массива (из области выше главной диагонали матрицы ввода). Он запоминается (переменная buf) и ему присваивается 1000. Согласно алгоритму Прима, если ребро подходящее минимальный элемент вычеркивается, а цикл начинается с начала. Подходящее ребро или нет? Ответ на этот вопрос находится следующим образом. Создается массив в n элементов. Каждый элемент равен 1 или 0. Когда вершина включается в дерево, в элемент массива с ее номером записывается 1 (изначально все элементы массива, кроме первого равны 0). Чтобы определить подходящее ребро или нет, нужно посмотреть, находятся ли единицы в массиве (номера элементов равны номерам вершин ребра). Если номерам вершин ребра соответствуют обе единица, значит, ребро не подходящее. Если это условие не выполняется – ребро подходящее. Алгоритм прекращает работу, когда все вершины включены в новый граф.

Отдельно можно выделить процедуру рисования графа. Программа создает двумерный массив координат вершин графа (krug[2] [10]). Вершины располагаются на окружности на одинаковом расстоянии друг от друга. Такой способ очень удобный, потому что не надо беспокоиться о том, что ребра будут наслаиваться одно на другое.

5. Тестирование программы

Тестирование программы проводилось на самых разных вариантах матрицы весов. В процессе тестирования ошибок не обнаружено.

Программа тестировалась на следующих примерах:

Матрица весов

24
3

Выдан результат

2
3

Матрица весов

23

Выдан результат

23

Матрица весов

35
4
1

Выдан результат

3
4

Матрица весов

653
25
6

Выдан результат

53
2

Матрица весов

564785
851969
28710
738
67
5

Выдан результат

545
2
3
6

На рисунке 9 изображен результат работы программы

Рисунок 9 – Окно программы


Заключение

В ходе проделанной работы была написана программа, реализующая алгоритм Прима. В результате программа выдает матрицу весов минимального остовного дерева графа, и изображает полученный граф.


Список использованных источников

1. http://works.tarefer.ru

2. http://www.intuit.ru

3. http://www.offzone.litehosting.ru

Приложение А

Листинг программы

// –

#include <vcl.h>

#pragma hdrstop

#include «Unit21.h»

// –

#pragma package (smart_init)

#include «math.h»

#pragma resource «*.dfm»

TForm1 *Form1;

int n=3;

// –

__fastcall TForm1:TForm1 (TComponent* Owner)

: TForm(Owner)

{

}

// –

void __fastcall TForm1: Button1Click (TObject *Sender)

{

n=StrToInt (Edit1->Text);

StringGrid1->ColCount=n;

StringGrid1->RowCount=n;

StringGrid2->ColCount=n;

StringGrid2->RowCount=n;

StringGrid1->Visible=true;

BitBtn1->Enabled=true;

Button1->Enabled=false;

}

// –

void __fastcall TForm1: BitBtn1Click (TObject *Sender)

{

BitBtn2->Enabled=true;

BitBtn1->Enabled=false;

Button1->Enabled=false;

StringGrid2->Visible=true;

int a[10] [10];

int mas[3] [10];

int kmas=0;

int versh[10];

for (int i=0; i<n; i++)

versh[i]=0;

versh[1]=1;

for (int i=0; i<n; i++)

for (int j=0; j<n; j++)

a[i] [j]=1000;

// *******

for (int i=0; i<n; i++)

for (int j=0; j<n; j++)

if (StringGrid1->Cells[i] [j]!=»») a[i] [j]=StrToInt (StringGrid1->Cells[i] [j]);

// **********

int k=n-1;

while (k!=0)

{

int buf=1000;

int x, y;

for (int i=1; i<n; i++)

for (int j=0; j<i; j++)

{

if ((a[i] [j]<buf) && ((versh[i]==1) || (versh[j]==1)) && (versh[i]!=versh[j]))

{buf=a[i] [j]; x=i; y=j;}

}

if (versh[x]==1) versh[y]=1; else versh[x]=1;

a[x] [y]=1000;

mas[0] [kmas]=x;

mas[1] [kmas]=y;

mas[2] [kmas]=buf;

kmas++;

// *****

k –;

}

/// ***********************

for (int i=0; i<kmas; i++)

StringGrid2->Cells [mas[0] [i]] [mas[1] [i]]=IntToStr (mas[2] [i]);

// **********

// рисование

int krug[2] [10];

Form1->Canvas->Pen->Color=clBlack;

for (int i=0; i<n; i++)

{

krug[0] [i]=400+100*sin (6.28*i/n);

krug[1] [i]=400+100*cos (6.28*i/n);

}

for (int i=0; i<kmas; i++)

{

Form1->Canvas->MoveTo (krug[0] [mas[0] [i]], krug[1] [mas[0] [i]]);

Form1->Canvas->LineTo (krug[0] [mas[1] [i]], krug[1] [mas[1] [i]]);

}

}

// –

void __fastcall TForm1: BitBtn2Click (TObject *Sender)

{

Button1->Enabled=true;

StringGrid1->Visible=false;

StringGrid2->Visible=false;

BitBtn2->Enabled=false;

Form1->Canvas->Pen->Color=clBtnFace;

Form1->Canvas->Rectangle (295, 295,505, 505);

}

Программа тестировалась на следующих примерах:

Приложение Б

Инструкция пользователя

Ограничения программы:

– количество вершин графа не более 10;

– длина ребра – целое положительное число, меньше 1000.

Порядок работы:

1) Пользователь вводит количество вершин графа

2) Нажимается кнопка «Сделать таблицу»

3) Вводятся данные в таблицу

4) Нажимается кнопка «Рассчитать дерево»

Программа составляет матрицу весов для минимального остовного дерева и изображает искомый граф.

5) Если пользователь хочет продолжить работу с программой, он должен нажать на кнопку «Продолжить»

Программа вернется в исходное состояние


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно