Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Системи лінійних рівнянь

Тип Реферат
Предмет Математика
Просмотров
1949
Размер файла
62 б
Поделиться

Ознакомительный фрагмент работы:

Системи лінійних рівнянь

СИСТЕМИ ЛІНІЙНИХ РІВНЯНЬ

1. Основні поняття і теореми

Постановка задачі. Потрібно знайти значення х1, х2, … , хn , що задовольняють таким співвідношенням: .

Тут aij (i = 1, 2, … , m; j = 1, 2, … , n) і bk (k = 1, 2, … , m) – задані числа.

При цьому:; ; .

Матриця А називається головною матрицею системи, вектор b – вектором-стовпцем правих частин, вектор x – вектором-стовпцем невідомих.

Використовуючи ці позначки, можна систему записати в матричній формі: Ах = b.

Якщо b1 = b2 = ¼ = bm = 0, то система рівнянь називається однорідною. Якщо хоча б одне з bk (k = 1, 2, ¼ , m) відмінне від нуля, то система називається неоднорідною.

.

Матриця називається розширеною матрицею системи.

Якщо система має хоча б один розв’язок, то вона називається сумісною.

При цьому система, що має єдиний розв’язок, називається визначеною, а більше одного розв’язку – невизначеною.

Якщо система не має розв’язків, то вона називається несумісною.

При розв’язуванні систем лінійних рівнянь має бути знайдена відповідь на три запитання:

А. Чи сумісна система?

В. Чи визначена система?

С. Як знайти розв’язок (чи розв’язки) системи, якщо вони існують?

Правило Крамера. Якщо неоднорідна система рівнянь невироджена (detА ¹ 0), то система визначена, тобто має єдиний розв’язок, і його можна знайти за формулами Крамера: (k = 1, 2, … , n) де Dk – визначник матриці, яку можна одержати, якщо в матриці А системи k-й стовпець замінити на стовпець вільних членів.

Ранг матриці. З розв’язуванням систем рівнянь безпосередньо пов'язане поняття рангу матриці. Ранг матриці – це найвищий порядок її мінора, відмінного від нуля.

Для того щоб знайти ранг матриці, важливо орієнтуватися в тому, які перетворення з матрицею можна робити, не змінюючи при цьому її ранг:

1) транспонування;

2) перестановка двох рядків (стовпців);

3) множення всіх елементів рядка (або стовпця) на число a¹ 0;

4) додавання до всіх елементів рядка (стовпця) відповіднихелементів іншого рядка (стовпця);

5) вилучення нульового рядка (стовпця);

6) викреслення рядка (стовпця), що є лінійною комбінацією інших рядків (стовпців).

Однорідні системи. Розглядається однорідна система лінійних рівнянь з n невідомими: Ах = 0.

Якщо rangА = n (detА¹ 0), то система визначена і має тільки тривіальний розв’язок: x1 = x2 = … = xn = 0.

Якщо rangА < n (detА = 0), то система має не тільки тривіальні розв’язки. При цьому всі розв’язки однорідної системи рівнянь утворюють лінійний простір L і dim L = n – rangА.

Щоб знайти базис простору розв’язків однорідної системи рівнянь, треба:

1.Знайти базисний мінор матриці А.

2.Якщо рядок не входить до базисного мінора, то рівняння, яке йому відповідає, є лінійною комбінацією інших рівнянь, і його можна не брати до уваги.

3.Якщо стовпець не входить у базисний мінор, то невідома з відповідним номером призначається вільною. Усього знайдеться (n – rang A) вільних невідомих.

4.Нехай вільні невідомі хr+1, хr+2, … , хn. Якщо дати вільним невідомим довільні значення, то одержимо неоднорідну систему рівнянь відносно хr+1, хr+2, … , хn, у якої визначник не дорівнює нулю, і, отже, система має єдиний розв’язок.

5.Дамо вільним невідомим значення (1, 0, 0, 0, … , 0), потім (0, 1, 0, 0, … , 0) і т. д. Розв’язуючи системи, що утворюють, одержимо відповідно вектори . Ці вектори й утворюють базис простору L розв’язків однорідної системи лінійних рівнянь.

6.Загальний розв’язок лінійної системи однорідних рівнянь у цьому випадку є лінійною комбінацією базисних векторів:

.

Неоднорідні системи. Теорема Кронекера – Капеллі: система неоднорідних лінійних рівнянь Ах = b сумісна тоді і тільки тоді, коли rangА = rang.

При цьому якщо rangА = rang= n, то система має єдиний розв’язок і він може бути знайдений за правилом Крамера.

Якщо rangА = rang<n, то система має нескінченно багато розв’язків, які утворюють лінійний многовид. При цьому підпростір зсуву – це простір L розв’язків однорідної системи рівнянь, і його базис можна побудувати способом, який було розглянуто вище. Вектор зсуву – це частинний розв’язок неоднорідної системи рівнянь. і він може бути знайдений, якщо в неоднорідній системі вільні невідомі покласти рівними деяким довільним значенням (наприклад, нульовим).

Загальний розв’язок неоднорідної системи – це загальний розв’язок відповідної однорідної системи плюс деякий частинний розв’язок неоднорідної системи. Останнє твердження можна записати через абревіатури відповідних термінів: З.Р.Н.С. = З.Р.О.С. + Ч.Р.Н.С.

Обернена матриця. Запишемо систему в матричному вигляді Ах = b. Якщо detА¹ 0 (така матриця А називається невиродженою), то для матриці А існує матриця А–1 така, що А–1А = АА–1 = Е.Така матриця називається оберненою до матриці А, і розв’язок системи можна записати за допомогою оберненої матриці у вигляді: А–1Ах = А–1b Þх = А–1b.

Таким чином, у випадку існування оберненої матриці А–1розв’язок системи має вигляд: х = А–1b.

Як же знайти обернену матрицю А–1 до невиродженої матриці А?

I спосіб.

1) Складемо матрицю Аik з алгебраїчних доповнень до елементів аik матриці А;

2) транспонуємо матрицю з алгебраїчних доповнень;

3) кожен елемент матриці, що утворилась, ділимо на detА.

В результаті маємо обернену матрицю А-1.

II спосіб.

1) Запишемо матрицю А, а праворуч від неї, через вертикальну риску, –одиничну матрицю Е. Одержимо матрицю яка має n рядків та 2n стовпців;

2) у матриці, що утворилась, за допомогою застосування до рядків (і тільки до рядків) перетворень, що не змінюють ранг матриці, утворимо на місці матриці А одиничну матрицю.

На місці одиничної матриці тепер стоїть А–1.

III спосіб. Праворуч від матриці припишемо одиничну матрицю Е, а знизу припишемо матрицю (–Е). У правому нижньому куті поставимо нульову матрицю. Використовуючи операції тільки над рядками матриці, що утворилась, на місці матриці (–Е) утворимо нульову матрицю. Тоді у правому нижньому куті буде стояти А–1.

IV спосіб. Для обернення матриці, що має блокову структуру, тобто матриці вигляду: , де А – квадратна матриця порядку n´n, а D – квадратна матриця q´q, справедливі дві формули Фробеніуса:

1.Перша формула Фробеніуса (якщо detА¹ 0):

, де H = DCA–1B.

2.Друга формула Фробеніуса (якщо detD¹ 0):

, де K = ABD–1C.

2. Контрольні питання і завдання

1. Що таке ранг матриці і її базисний мінор? Чи визначаються вони однозначно?

2. Знайти ранг і всі базисні мінори матриці: .

3. Як пов'язані ранг матриці і вимірність лінійної оболонки її рядків.

4. Чому дорівнює вимірність простору розв’язків однорідної системи лінійних рівнянь, якщо в системі 10 рівнянь, 16 невідомих і ранг матриці системи дорівнює 6?

5. Чи утворює множина розв’язків неоднорідної системи лінійний простір? Яка з властивостей лінійного простору не виконується?

6. Згадайте визначення лінійного многовиду. Що називається його базисом і вимірністю?

7. Як визначається вектор зсуву для лінійного многовиду, що є множиною розв’язків неоднорідної системи?

3. Приклади розв’язування задач

Задача 1. Знайти ранг матриці .

Розв’язання. Насамперед відзначимо, що четвертий рядок матриці є сумою другого і третього рядків і тому при вилученні цього рядка ранг матриці не зміниться.

1.Відкинемо четвертий рядок.

2.З другого і третього рядків матриці віднімемо перший рядок, помножений, відповідно, на 2 та 3.

3.В отриманій матриці з третього рядка віднімемо другий, помножений на 2.

Одержимо ланцюжок перетворень:

лінійний рівняння матриця

.

У матриці, що утворилась, мінор, який стоїть в перших трьох стовпцях, не дорівнює нулю. Отже, ранг вихідної матриці дорівнює 3 і мінор 3-го порядку, що стоїть в перших трьох стовпцях, є базисним мінором матриці А.

Задача 2. Знайти матрицю, яка є оберненою до матриці

.

Розв’язання. Знайдемо обернену матрицю за визначенням. Нехай обернена матриця має вигляд: . Тоді, за визначенням,

АА–1 = Е, тобто .

Знаходячи добуток матриць, одержимо рівності:

.

Із цих співвідношень одержуємо: g = 0, d = 0, a = 1; далі: h = 0, e =1, b = –3. І нарешті: m = 1, f = –2, c = 11. У підсумку дійдемо висновку, що:

.

Задача 3. Знайти матрицю, яка є оберненою до матриці .

Розв’язання. Побудуємо матрицю 6 ´ 6, дописавши праворуч від А одиничну матрицю Е, внизу матрицю (– Е), а інші місця заповнимо нулями.

.

За допомогою операцій над рядками матриці А¢ утворимо на місці (–Е) нульову матрицю. Тоді в правому нижньому куті буде стояти матриця А–1.

1.До всіх рядків матриці А¢ додамо третій рядок з деяким множником, домагаючись того, щоб всі елементи першого стовпця, крім а31, дорівнювали нулю.

2.Перший рядок отриманої матриці поділимо на (–3) і, додаючи до інших рядків матриці отриманий перший рядок з деякими множниками, досягаємо того, щоб у другому стовпці стояли нулі, крім елемента а12.

3.За допомогою другого рядка утворимо нулі в третьому стовпці, крім елемента а23.

Одержимо ланцюжок перетворень:

Звідси укладаємо, що .

Задача 4. Знайти матрицю, яка є оберненою до .

Розв’язання. Для обернення матриці застосуємо першу формулу Фробеніуса. Позначимо: , , , .

Знаходимо послідовно:

;

;

;

.

І тоді . Привабливість зазначеного способу полягає в тому, що для обернення матриці 4-го порядку ми маємо справу з оберненням матриць лише 2-го порядку, що істотно простіше.

Задача 5. За допомогою правила Крамера розв’язати систему лінійних неоднорідних рівнянь: .

Розв’язання. Головна матриця системи має вигляд: .

Розв’язок системи може бути знайдений за правилом Крамера, тому що detА = D = 18 ¹ 0. Для цього побудуємо визначники Dх, Dу, Dz, які відрізняються від головного визначника тим, що в ньому стовпець коефіцієнтів при, відповідно, х, у та z замінено на стовпець вільних членів, тобто:

.

Обчислюючи їх, знаходимо, що Dх = 18, Dу = 36, Dz = 54.

Отже .

Задача 6. Розв’язати систему лінійних однорідних рівнянь:

Розв’язання. Насамперед відзначимо, що система напевне сумісна, оскільки однорідна система завжди має щонайменше нульовий розв’язок.

Почнемо пошук загального розв’язку даної системи. Головна матриця системи має вигляд: .

Знайдемо ранг матриці А. Перший рядок матриці з відповідними множниками додамо до інших рядків матриці так, щоб елементи першого стовпця обернулися на нуль, крім елемента а11. Вийде матриця А1 така, що

rangА1 = rangА і .

Відзначаючи, що третій і четвертий рядки матриці пропорційні другому рядку, укладаємо, що rangА1 = rangА2, де . Помножимо другий рядок матриці А2 на (–2) і додамо до першого рядка. Одержимо матрицю А3: , таку, що rangА3 = rangА2 = 2. У підсумку rangА = rangА3 = 2.

Тоді вийшла система двох рівнянь, з яких можна написати:

х1 = 14х3 – 7х4 + 3х5 – х6, х2 = –7х3 + 2х4 – х5 – 2х6 і змінні х3, х4, х5, х6 – будь-які. Це і є розв’язок системи.

Однак можна (і необхідно) піти далі. Множина розв’язків лінійної однорідної системи утворює лінійний простір L вимірності dimL = n – rangА = 6 – 2 = 4. Для знаходження базисних векторів простору розв’язків надамо вільним невідомим х3, х4, х5, х6 значення: а) 1, 0, 0, 0; б) 0, 1, 0, 0; в) 0, 0, 1, 0; г) 0, 0, 0, 1. Одержимо чотири вектори, що утворять базис L: е1 = (14, –7, 1, 0, 0, 0); е2 = (–7, 2, 0, 1, 0, 0); е3 = (3, –1, 0, 0, 1, 0); е4 = (–1, –2, 0, 0, 0, 1). У такий спосіб L = ℒ(е1, е2, е3, е4), і будь-який розв’язок вихідної системи може бути записаний у вигляді лінійної комбінації базисних векторів, тобто у вигляді: с1(14, –7, 1, 0, 0, 0) + с2(–7, 2, 0, 1, 0, 0) + с3(3, –1, 0, 0, 1, 0) + с4(–1, –2, 0, 0, 0, 1), де с1, с2, с3, с4 – будь-які значення. Це і є загальний розв’язок вихідної лінійної однорідної системи рівнянь.

Задача 7. Розв’язати систему лінійних неоднорідних рівнянь

Розв’язання. Розширена матриця системи рівнянь має вигляд: , причому до вертикальної риски записана головна матриця системи, а після вертикальної риски – стовпець вільних членів. Перетворюючи матрицю аналогічно до того, як перетворювалася матриця А в розв’язку попередньої задачі, одержимо матрицю А таку, що rang = rangА = 2 і . Звідси можна записати загальний розв’язок системи у вигляді: х1 = 1 + 14х3 – 7х4 – 3х5, х2 = 2 – 7х3 + 2х4 – х5, де х3, х4, х5 – будь-які.

Це і є загальний розв’язок вихідної системи лінійних рівнянь. Однак з метою прояснення алгебраїчної структури розв’язку системи відзначимо таке:

Враховуючи, що rang = rang A = 2 < n = 5, можемо зазначити, що множина розв’язків системи являє собою лінійний многовид. Вектором зсуву цього лінійного многовиду є частинний розв’язок неоднорідної системи рівнянь, для знаходження якого дамо вільним невідомим х3, х4, х5 довільні значення (наприклад нулі) і одержимо: f = (1, 2, 0, 0, 0). Підпростором зсуву є простір розв’язків однорідної системи з матрицею А2, яка збігається з головною матрицею вихідної системи неоднорідних рівнянь

.

Звідси х1 = 14х3 – 7х4 – 3х5, х2 = – 7х3 + 2х4 – х5, де х3, х4, х5 – будь-які. Даючи вільним змінним х3, х4, х5 значення: а) 1, 0, 0; б) 0,1,0; в) 0, 0, 1; одержимо, відповідно, базисні вектори простору L розв’язків однорідної системи рівнянь:е1 = (14, –7, 1, 0, 0), е2 = (–7, 2, 0, 1, 0), е3 = (–3, –1, 0, 0, 1).

Отже, розв’язки вихідної системи утворюють лінійний многовид М:

M = {x½x = f + c1e1 + c2e2 + c3e3}, де c1, c2, c3 – будь-які,


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно