Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Задачи математического программирования

Тип Реферат
Предмет Математика
Просмотров
958
Размер файла
139 б
Поделиться

Ознакомительный фрагмент работы:

Задачи математического программирования

Федеральное агентство по образованию

Новокузнецкий филиал-институт

ГОУ ВПО «Кемеровский государственный университет»

кафедра информационных систем и управления им. В.К. Буторина

Курсовая работа

Задачи математического программирования

(Вариант 4)

Новокузнецк 2010


Содержание

Введение

1. Понятие математического программирования

2. Понятие линейного программирования. Виды задач линейного программирования

3. Понятие нелинейного программирования

4. Динамическое программирование

Лабораторная работа №1 (Задача линейного программирования)

Лабораторная работа № 2(Решение задачи ЛП средствами табличного процессора Excel)

Лабораторная работа № 3 (Решение транспортной задачи)

Лабораторная работа №4 (решение задач нелинейного программирования)

Лабораторная работа №5 (задача динамического программирования об оптимальном распределении инвестиций)

Лабораторная работа №5 (задача динамического программирования о выборе оптимального пути в транспортной сети)

Заключение

Список литературы


Введение

Переход от административных к экономическим методам управления производством, развитие рыночных отношений, распространение договорных цен – все это нацеливает экономические службы на поиск наилучших хозяйственных решений, обеспечивающих максимум результатов или минимум затрат. Необходимость поиска таких решений обуславливается, прежде всего, существованием ограничений на факторы производства, в пределах которых предприятия (отдельные производители) постоянно функционируют. Если бы эти ограничения отсутствовали, то нечего было бы выбирать, не было бы и вариантов решений.

Известно, что определенный вид продукции можно произвести, используя различные технологические способы; в некоторых производствах возможна взаимозаменяемость материалов; один и тот же тип оборудования может быть использован для производства различных видов продукции и т.п.

Как лучше организовать производство, по каким ценам выгодно производить продукцию, как лучше всего использовать производственные ресурсы, которые высвобождаются и т.п.?

На все эти вопросы позволяет получить ответ математическое программирование, являющееся действенным инструментом принятия решений.

Математическое программирование представляет собой математическую дисциплину, занимающуюся изучением экстремальных задач и разработкой методов их решения.

В общем виде математическая постановка экстремальной задачи состоит в определении наибольшего или наименьшего значения целевой функции f(x1, х2,.........., xn) при условиях gi(x1, х2,.........., xn) ≤ bi, где f и gi — заданные функции, a bi — некоторые действительные числа.

В зависимости от свойств функций f и gi математическое программирование можно рассматривать как ряд самостоятельных дисциплин, занимающихся изучением и разработкой методов решения определенных классов задач.

Прежде всего задачи математического программирования делятся на задачи линейного и нелинейного программирования. При этом если все функции f и gi линейные, то соответствующая задача является задачей линейного программирования. Если же хотя бы одна из указанных функций нелинейная, то соответствующая задача является задачей нелинейного программирования. Наиболее изученным разделом математического программирования является линейное программирование. Для решения задач линейного программирования разработан целый ряд эффективных методов, алгоритмов и программ. Среди задач нелинейного программирования наиболее глубоко изучены задачи выпуклого программирования. Это задачи, в результате решения которых определяется минимум выпуклой (или максимум вогнутой) функции, заданной на выпуклом замкнутом множестве.

В свою очередь, среди задач выпуклого программирования более подробно исследованы задачи квадратичного программирования. В результате решения таких задач требуется в общем случае найти максимум (или минимум) квадратичной функции при условии, что ее переменные удовлетворяют некоторой системе линейных неравенств или линейных уравнений либо некоторой системе, содержащей как линейные неравенства, так и линейные уравнения.

В задачах целочисленного программирования неизвестные могут принимать только целочисленные значения.

Задача, процесс нахождения решения которой является многоэтапным, относится к задаче динамического программирования.


1. Понятие математического программирования

Математическое программирование – это математическая дисциплина, в которой разрабатываются методы отыскания экстремальных значений целевой функции среди множества ее возможных значений, определяемых ограничениями.

Наличие ограничений делает задачи математического программирования принципиально отличными от классических задач математического анализа по отысканию экстремальных значений функции. Методы математического анализа для поиска экстремума функции в задачах математического программирования оказываются непригодными.

Для решения задач математического программирования разработаны и разрабатываются специальные методы и теории. Так как при решении этих задач приходится выполнять значительный объем вычислений, то при сравнительной оценке методов большое значение придается эффективности и удобству их реализации на ЭВМ.

Математическое программирование можно рассматривать как совокупность самостоятельных разделов, занимающихся изучением и разработкой методов решения определенных классов задач.

В зависимости от свойств целевой функции и функции ограничений все задачи математического программирования делятся на два основных класса:

задачи линейного программирования,

задачи нелинейного программирования;

задачи динамического программирования.

Если целевая функция и функции ограничений – линейные функции, то соответствующая задача поиска экстремума является задачей линейного программирования. Если хотя бы одна из указанных функций нелинейна, то соответствующая задача поиска экстремума является задачей нелинейного программирования.


2. Понятие линейного программирования. Виды задач линейного программирования

Линейное программирование (ЛП) – один из первых и наиболее подробно изученных разделов математического программирования. Именно линейное программирование явилось тем разделом, с которого и начала развиваться сама дисциплина "математическое программирование". Термин "программирование" в названии дисциплины ничего общего с термином "программирование (т.е. составление программы) для ЭВМ" не имеет, т.к. дисциплина "линейное программирование" возникла еще до того времени, когда ЭВМ стали широко применяться для решения математических, инженерных, экономических и др. задач.

Термин "линейное программирование" возник в результате неточного перевода английского "linear programming". Одно из значений слова "programming" - составление планов, планирование. Следовательно, правильным переводом английского "linear programming" было бы не "линейное программирование", а "линейное планирование", что более точно отражает содержание дисциплины. Однако, термины линейное программирование, нелинейное программирование, математическое программирование и т.д. в нашей литературе стали общепринятыми и поэтому будут сохранены.

Итак, линейное программирование возникло после второй мировой войны и стало быстро развиваться, привлекая внимание математиков, экономистов и инженеров благодаря возможности широкого практического применения, а также математической стройности.

Можно сказать, что линейное программирование применимо для решения математических моделей тех процессов и систем, в основу которых может быть положена гипотеза линейного представления реального мира.

Линейное программирование применяется при решении экономических задач, в таких задачах как управление и планирование производства; в задачах определения оптимального размещения оборудования на морских судах, в цехах; в задачах определения оптимального плана перевозок груза (транспортная задача); в задачах оптимального распределения кадров и т.д.

Задача линейного программирования (ЛП), как уже ясно из сказанного выше, состоит в нахождении минимума (или максимума) линейной функции при линейных ограничениях.

Существует несколько методов решения задач ЛП. В данной работе будут рассмотрены некоторые из них, в частности:

Графический метод решения задачи ЛП;

Симплексный метод;

Решение задачи ЛП средствами табличного процессора Excel;

3. Понятие нелинейного программирования

В большинстве инженерных задач построение математической модели не удается свести к задаче линейного программирования.

Математические модели в задачах проектирования реальных объектов или технологических процессов должны отражать реальные протекающие в них физические и, как правило, нелинейные процессы. Переменные этих объектов или процессов связанны между собой физическими нелинейными законами, такими, как законы сохранения массы или энергии. Они ограничены предельными диапазонами, обеспечивающими физическую реализуемость данного объекта или процесса. В результате, большинство задач математического программирования, которые встречаются в научно-исследовательских проектах и в задачах проектирования – это задачи нелинейного программирования (НП).

В данной работе будет рассматриваться такой метод решения задач НП, как метод множителей Лагранжа.

Метод множителей Лагранжа позволяет отыскивать максимум (или минимум) функции при ограничениях-равенствах. Основная идея метода состоит в переходе от задачи на условный экстремум к задаче отыскания безусловного экстремума некоторой построенной функции Лагранжа.

4. Динамическое программирование

Динамическое программирование представляет собой математические аппарат, позволяющий быстро находить оптимальное решение в случаях, когда анализируемая ситуация не содержит факторов неопределенности, но имеется большое количество вариантов поведения, приносящих различные результаты, среди которых необходимо выбрать наилучший. Динамическое программирование подходит к решению некоторого класса задач путем разложения на части, небольшие и менее сложные задачи. В принципе, задачи такого рода могут быть решены путем перебора всех возможных вариантов и выбора среди них наилучшего, однако часто такой перебор весьма затруднен. В этих случаях процесс принятия оптимального решения может быть разбит на шаги (этапы) и исследован с помощью метода динамического программирования.

Решение задач методами динамического программирования проводится на основе сформулированного Р.Э.Беллманом принципа оптимальности: оптимальное поведение обладает тем свойством, что каким бы ни было первоначальное состояние системы и первоначальное решение, последующее решение должно определять оптимальное поведение относительно состояния, полученного в результате первоначального решения.

Таким образом, планирование каждого шага должно проводится с учетом общей выгоды, получаемой по завершении всего процесса, что и позволяет оптимизировать конечный результат по выбранному критерию.

Вместе с тем динамическое программирование не является универсальным методом решения. Практически каждая задача, решаемая этим методом, характеризуется своими особенностями и требует проведения поиска наиболее приемлемой совокупности методов для ее решения. Кроме того, большие объемы и трудоемкость решения многошаговых задач, имеющих множество состояний, приводят к необходимости отбора задач малой размерности либо использования сжатой информации.

Динамическое программирование применяется для решения таких задач, как: распределение дефицитных капитальных вложений между новыми направлениями их использования; разработка правил управления спросом и запасами; составление календарных планов текущего и капитального ремонтов оборудования и его замены; поиск кратчайших расстояний на транспортной сети и т.д.

Пусть процесс оптимизации разбит на n шагов. На каждом шаге необходимо определить два типа переменных – переменную состояния S и переменную управления X. Переменная S определяет, в каких состояниях может оказаться система на данном k-м шаге. В зависимости от S на этом шаге можно применить некоторые управления, которые характеризуются переменной X. Применение управления X на k-м шаге приносит некоторый результат Wk(S,Xk) и переводит систему в некоторое новое состояние S'(S,Xk). Для каждого возможного состояния на k-м шаге среди всех возможных управлений выбирается оптимальное управление X*k такое, чтобы результат, который достигается за шаги с k-го по n-й, оказался оптимальным. Числовая характеристика этого результата называется функцией Беллмана Fk(S) и зависит от номера шага k и состояния системы S.

Все решения задачи разбиваются на два этапа. На первом этапе, который называют условной оптимизацией, отыскиваются функция Беллмана и оптимальные управления для всех возможных состояний на каждом шаге, начиная с последнего.

После того, как функция Беллмана и соответствующие оптимальные управления найдены для всех шагов с n-го по первый, производится второй этап решения задачи, который называется безусловной оптимизацией.

В общем виде задача динамического программирования формулируется следующим образом: требуется определить такое управление X*, переводящее систему из начального состояния S0 в конечное состояние Sn, при котором целевая функция F(S0,X*) принимает наибольшее (наименьшее) значение.

Особенности математической модели динамического программирования заключаются в следующем:

задача оптимизации формулируется как конечный многошаговый процесс управления;

целевая функция является аддитивной и равна сумме целевых функций каждого шага

;

выбор управления Xk на каждом шаге зависит только от состояния системы к этому шагу Sk-1 и не влияет на предшествующие шаги (нет обратной связи);

состояние системы Sk после каждого шага управления зависит только от предшествующего состояния системы Sk-1 и этого управляющего воздействия Xk (отсутствие последействия) и может быть записано в виде уравнения состояния:

;

на каждом шаге управление Xk зависит от конечного числа управляющих переменных, а состояние системы Sk зависит от конечного числа переменных;

оптимальное управление X* представляет собой вектор, определяемый последовательностью оптимальных пошаговых управлений:

X*=(X*1, X*2, …, X*k, …, X*n),

число которых и определяет количество шагов задачи.

Условная оптимизация. Как уже отмечалось выше, на данном этапе отыскиваются функция Беллмана и оптимальные управления для всех возможных состояний на каждом шаге, начиная с последнего в соответствии с алгоритмом обратной прогонки. На последнем n-м шаге найти оптимальное управление X*n и значение функции Беллмана Fn(S) не сложно, так как

Fn(S)=max{Wn(S,Xn)},

где максимум ищется по всем возможным значениям Xn.

Дальнейшие вычисления производятся согласно рекуррентному соотношению, связывающему функцию Беллмана на каждом шаге с этой же функцией, но вычисленной на предыдущем шаге:

Fk(S)=max{Wk(S,Xk)+Fk+1(S'(S,Xk))}. (1)

Этот максимум (или минимум) определяется по всем возможным для k и S значениям переменной управления X.

Безусловная оптимизация. После того, как функция Беллмана и соответствующие оптимальные управления найдены для всех шагов с n-го по первый (на первом шаге k=1 состояние системы равно ее начальному состоянию S0), осуществляется второй этап решения задачи. Находится оптимальное управление на первом шаге X1, применение которого приведет систему в состояние S1(S,x1*), зная которое можно, пользуясь результатами условной оптимизации, найти оптимальное управление на втором шаге, и так далее до последнего n-го шага.


Лабораторная работа №1 (Задача линейного программирования)

Задание:

Для заданной математической постановки задачи ЛП, приняв дополнительно условие неотрицательности переменных, выполнить следующие действия:

Решить задачу графическим методом;

Привести задачу к канонической форме записи;

Составить симплексную таблицу;

Произвести решение задачи симплексным методом ручным способом или с использование компьютера;

Осуществить постановку двойственной задачи ЛП;

Получить решение двойственной задачи из полученной ранее симплексной таблицы и произвести анализ полученных результатов;

Проверить результаты решения в табличном процессоре Excel;

Составить отчет с приведение результатов по каждому пункту.

РесурсыЗапасыПродукция
Р1Р2
S1180.23
S213.10.72
МВ232.32
Прибыль от единицы продукции в У.Е.34

Решение:

Графический метод. Для построения многоугольника решений преобразуем исходную систему


, получим

изобразим граничные прямые.

Линейная функция F=f(x) является уравнением прямой линии c1x1 + c2x2 = const. Построим график целевой функции при f(x)=0. для построения прямой 3x1 + 4x2 = 0 строим радиус-вектор N = (3; 4) и через точку 0 проводим прямую, перпендикулярную ему. Построенную прямую F=0 перемещаем параллельно самой себе в направлении вектора N.

Рисунок 1 – Графический метод


Из рисунка 1 следует, что опорной по отношению к построенному многоугольнику решений эта прямая становится в точке B, где функция F принимает максимальное значение. Точка В лежит на пересечении прямых 0,7x1 + 2x2 ≤ 13,1 и 2,3x1 + 2x2 =23/ Для определения ее координат решим систему уравнений:

Оптимальный план задачи: х1 = 6.187; х2 = 4.38, подставляя значения х1 и х2 в целевую функцию, получаем Fmax= 3*6.187+4*4.38=36.08.

Таким образом, для того, чтобы получить максимальную прибыль в размере 36.06 долларов, необходимо запланировать производство 6 ед. продукции P1 и 4 ед. продукции P2.

Канонический вид задачи ЛП. Запишем в канонической форме задачу распределения ресурсов. Добавив к исходной системе ограничений неотрицательные переменные х3 ≥ 0, х4 ≥ 0, х5 ≥ 0, имеем:

При этом в далее получаемом решении переменные х3 и х4 будут соответствовать объемам неиспользованного сырья S1 и S2, а х5 – неиспользованному машинному времени.

Симплексная таблица ЛП. В случае базисных переменных {x3, x4, x5} начальная симплекс таблица будет выглядеть:


Таблица 1.

-х1-х2
х3 =0,2318
х4 =0,7213,1
х5 =2,3223
f(x) =34

Она уже соответствует опорному плану x(0) = [0 0 18 13,1 23]Т (столбец свободных членов).

Симплексный метод решения задачи ЛП. Для того, чтобы опорный план был оптимален, при максимизации целевой функции необходимо, чтобы коэффициенты в строке целевой функции были неотрицательными, т.е. при поиске максимума мы должны освободиться от отрицательных коэффициентов в строке f(x).

Алгоритм симплекс метода.

1. Выбор разрешающего столбца. В качестве разрешающего выбираем столбец с минимальным коэффициентом в строке f(x). В данном примере это столбец х2.

2. Выбор разрешающей строки. Для выбора разрешающей строки (разрешающего элемента) среди положительных коэффициентов разрешающего столбца выбираем тот элемент, для которого отношение коэффициентов в столбце свободных членов к коэффициенту в разрешающем столбце минимально. Разрешающий элемент рассчитывается по формуле:

В данном примере такой строкой будет строка х3, т.к. отношение коэффициента в столбце свободных членов к коэффициенту в разрешающем столбце минимально.

3. Замена базиса. Для перехода к следующей симплексной таблице (следующему опорному плану с большим значением целевой функции) делаем шаг модифицированного жорданова исключения с разрешающим элементом arl, при котором базисная переменная xr становится свободной и одновременно свободная переменная xi становится базисной.

3.1 на месте разрешающего элемента ставится 1 и делится на разрешающий элемент;

3.2 остальные элементы разрешающего столбца меняют знак на противоположный и делятся на разрешающий элемент;

3.3 остальные элементы разрешающей строки делятся на разрешающий элемент;

3.4. все остальные элементы симплексной таблицы вычисляются по формуле:

3.5. элементы правого столбца и нижней строки пересчитываются по тому же принципу, что и элементы в центральной части таблицы.

Симплексная таблица, рассчитанная по алгоритму:

Таблица 2.

-х1-х3
х2 =0,0670,36
х4 =0,57-0,671,1
х5 =2,17-0,6711
f(x) =-3,271,372,6

Следующим разрешающим столбцом будет столбец х1, а разрешающей строкой – х4. Далее действуем по тому же алгоритму.


Таблица 3.

-х4-х31
х2 =-0,10,245,87
х1 =1,75-1,171,03
х5 =-3,81,885,8
f(x) =5,7-2,535,06

Следующим разрешающим столбцом будет столбец х5, а разрешающей строкой – х3. Далее действуем по тому же алгоритму.

Таблица 4.

-х4-х51
х2 =0,39-0,134,4
х1 =-0,610,66,19
Х3 =-20,531,3
f(x) =0,641,336,08

Конечная симплексная таблица:

Все коэффициенты в строке целевой функции положительны, т.е. мы нашли оптимальное решение.

Таким образом, в точке x1 = 4, x2 = 6, x3 = 1,3, x4 = 0, x5 = 0 целевая функция принимает максимальное значение f(x) = 36.

При этом переменным, которые стоят в верхней строке, в базисном решении присваивается значение 0 – это свободные переменные. Каждая из переменных, стоящая в левом столбце, приравнивается к числу, записанному в правом столбце той же самой строки – это базисные переменные.

Постановка двойственной задачи ЛП. Определить значение двойственных оценок можно следующим образом. если некоторый i-тый ресурс используется не полностью, т.е. имеется резерв, значит дополнительная переменная в ограничении для данного ресурса будет больше нуля. Очевидно, что при увеличении общего машинного времени не произошло бы увеличение целевой функции. Следовательно, машинное время не влияет на прибыль и для третьего ограничения двойственная переменная y3 = 0. Таким образом, если по данному ресурсу есть резерв, то дополнительная переменная будет больше нуля, а двойственная оценка данного ограничения равна нулю.

В данном примере оба вида сырья использовались полностью, поэтому их дополнительные переменные равны нулю (в итоговой симплексной таблице переменные х3 и х4 являются свободными, значит х3 = х4 = 0). Если ресурс использовался полностью, то его увеличение или уменьшение повлияет на объем выпускаемой продукции и, следовательно, на величину целевой функции. Значение двойственной оценки при этом находится в симплекс-таблице на пересечении строки целевой функции со столбцом данной дополнительной переменной.

Получить решение двойственной задачи из полученной ранее симплексной таблицы и произвести анализ полученных результатов. Формулировка и результаты решения исходной и двойственной задач распределения ресурсов приведены в таблице 4.

Таблица 4.

Исходная задача ЛПДвойственная задача ЛП
Математическая постановка
Обозначения и интерпретация параметров задачи

xj, j = - количество производимой продукции j-го вида;

f(x) – общая прибыль от реализации продукции

yi, i = - стоимость единицы i-го ресурса;

- стоимость всех имеющихся ресурсов

Экономическая интерпретаци язадачи
Сколько и какой продукции необходимо произвести, чтобы пр заданных стоимостях cj, j = еддиницы продукции и размерах имеющихся ресурсов bi, i = максимизировать общую прибыль?Какова должна быть цена единицы каждого из ресурсов, чтобы при заданных их количествах bi, i = и величинах стоимости единицы продукции cj, j = минимизировать общую стоимость затрат?
Результаты решения

Результирующая симплекс-таблица

-х4-х51
х2 =4,4
х1 =6,19
Х3 =1,3
f(x) =0,641,336,08

Основные переменные

х1 = 6,19

х2 = 4,4

дополнительные переменные

х3 = 1,3

х4 = 0

х5 = 0

Дополнительные переменные

y4 = 0

y5 = 0

основные переменные

y1 = 0,64

y2 = 1,3

y3 = 0

Интерпретация дополнительных переменных
xn+1, …., xn+m – неиспользованное (резервное) количество соответствующего ресурса (при наличие резервного ресурса соответствующая двойственная переменная навна 0)ym+1, …, ym+n – насколько уменьшится целевая функция при принудительном выпуске единицы данной продукции (если какая-либо из основных переменных исходной задачи равна 0)

Проверить результаты решения в табличном процессоре Excel. В Excel имеется надстройка «Поиск решения», которая позволяет решать оптимизационные задачи.

Использовав эту надстройку для решения нашей задачи ЛП, получаем следующий результат:


Таблица 6.

ПеременныеЦелевая функция
Вид продукцииР1Р2Прибыль
Значение6,18754,384436,1
Прибыль от ед. прод.34макс
Ограничения
Типы ресурсовР1Р2Расход ресурсовЗнакЗапас ресурсов
Сырье S10,2314,390625<=18
СырьеS20,7213,1<=13,1
Машинное время2,3223<=23

Но при применении надстройки «поиск решения» к задаче, двойственной данной задаче ЛП, приходим к выводу, что решение полученное с помощью надстройки не сходится с решением из симплекс-таблицы:

Таблица 7.

Переменные
имяx1x2f(x)
значение6,194,3836,1
коэф-ты f(x)34макс
Ограничениядвойств. Оценки
x1x2левая частьзнакправая частьy
18362,653125<=181,333333
20,7213,1<=13,10
32,3223<=230
Ограничения двойственной задачиЦелевая функция двойственной задачи
10,66667424

Лабораторная работа № 2 (Решение задачи ЛП средствами табличного процессора Excel)

Для заданной содержательной постановки задачи ЛП выполнить следующие действия:

Осуществить математическую запись задачи ЛП;

Решить задачу с использование надстройки Excel «Поиск решения»;

Привести математическую постановку двойственной задачи ЛП;

Получить решение двойственной задачи ЛП с использованием надстройки Excel «Поиск решения»;

Получить решение задачи в предположении целочисленности переменных;

Произвести анализ полученных результатов и дать их содержательную интерпретацию.

Задача: В состав рациона кормления входят три продукта: сено, силос и концентраты, содержащие следующие питательные вещества: белок, кальций и витамины. Содержание питательных веществ в граммах в 1 килограмме соответствующего продукта питания и минимально необходимое их потребление заданы таблицей:

ПродуктыПитательные вещества
белоккальцийвитамины
1. Сено562
2. Силос241
3. Концентраты1831
Норма потребления20012040

Определить оптимальный режим кормления, из условия минимальной стоимости, если цена 1 кг продукта питания соответственно составляет: для сена - 30коп., для силоса- 20 коп., для концентрата – 50 коп.

Решение

Осуществить математическую запись задачи ЛП. Составим математическую модель. Обозначим через х1 – количество единиц сена, через х2 – количество единиц силоса а через х3 – количество единиц концентрата. Функция затрат на покупку этих продуктов выглядит так: f(x)=30x1+20x2+50x3 её необходимо минимизировать. Необходимые нормы потребления выражены в виде ограничений:


В результате общая постановка задачи ЛП имеет вид:

Решить задачу с использование надстройки Excel «Поиск решения». В качестве значений переменных выступает количество закупаемой продукции каждого вида. В ячейках «Расход питательных веществ» содержатся формулы, определяющие левые части ограничений, а в ячейках необходимое потребление питательных веществ – значения правых частей ограничений.

После ввода всех данных выбираем команду Сервис / Поиск Решения и, заполняем открывшееся диалоговое окно Поиск Решения:

В качестве целевой ячейки выбираем ячейку, в которой находится значение целевой функции, выполняем максимизацию функции, изменяя ячейки со значениями количества продукции. Устанавливаем ограничения.

Далее выбираем пункт «Параметры», чтобы проверить, какие параметры заданы для поиска решения. В окне Параметры поиска решения можно изменять условия и варианты поиска решения исследуемой задачи, а также загружать и сохранять оптимизируемые модели.

Для данной задачи достаточно установить два флажка «Линейная модель» (т.к. ограничения и целевая функция являются линейными по переменным) и «Неотрицательные значения» (для выполнения условий задачи ЛП).

Теперь задача оптимизации подготовлена полностью. После нажатия кнопки «Выполнить» открывается окно «Результаты поиска решения», которое сообщает, что решение найдено.

Таблица 9

Переменные

Целевая функция
Вид продуктасеносилосконцентратf(x)
значение16,770,006,4576,13
затраты на ед.прод.324min
Ограничения
Питательные веществасеносилосконцентрат

расход питательных

веществ

знакнеобходимое потребление пит.веществ
белки5218200,00>=200
кальций643120,00>=120
витамины21140,00>=40

Привести математическую постановку двойственной задачи ЛП. Двойственная задача ЛП определяется по формуле:


Математическая постановка двойственной задачи ЛП:

Получить решение двойственной задачи ЛП с использованием надстройки Excel «Поиск решения». К имеющимся данным добавляются значения двойственных переменных, ячейка, содержащая формулу целевой функции двойственной задачи, и ячейки, определяющие левые части ограничений двойственной задачи. Далее для решения двойственной задачи выполняем с помощью надстройки Excel «Поиск решения». Получаем:

Таблица 10

ПеременныеЦелевая функция
Вид продуктасеносилосконцентрат f(x)
значение16,770,006,4576,13
затраты на ед.прод.324min
Ограничения
Питательные веществасеносилосконцентратЛевая частьзнакПравая частьДвойственные оценки
белки5218200,00>=2000,6
кальций643120,00>=1200
витамины21140,00>=400

Ограничения двойственной функции

Целевая функция двойственной задачи
31,210,8120

Получить решение задачи в предположении целочисленности переменных/ Для решения поставленной задачи воспользуемся командой Поиск решения. К исходным данным при решении задачи ЛП добавим еще одно ограничение целочисленности для ячеек, содержащих искомое количество производимой продукции. После выполнения поиска получаем решение, приведенное в таблице 11.

Таблица 11

ПеременныеЦелевая функция
Вид продуктасеносилосконцентратf(x)
значение160676
затраты на ед.прод.324min
Ограничения
Питательные веществасеносилосконцентрат

расход питательных

веществ

знак

необходимое потребление питательных

веществ

белки5218200>=200
кальций643120>=120
витамины21140>=40

Из полученного решения очевидно, что для минимизации затрат необходимо закупать 16 кг сена и 6 кг концентрата, закупка же силоса нецелесообразна. При этом потребление питательных веществ, таких как – белок, кальций и витамины не уменьшится.


Лабораторная работа № 3 (Решение транспортной задачи)

Для заданной матрицы издержек С, вектора – столбца запасов В в пунктах отправления и вектора - строки потребностей А в пунктах назначения решить транспортную задачу и составить отчет по следующим пунктам:

Осуществить математическую запись транспортной задачи;

Решить задачу с помощью надстройки Excel «Поиск решения»;

Изменить данные для получения открытой задачи и решить ее.

2 3 4 2 4 140

С= 8 4 1 4 1 180

9 7 3 7 2 160

60 70 120 130 100

Решение

Осуществить математическую запись транспортнойзадачи.Обозначим через хij количество единиц сырья, перевозимого из i-го пункта его получения на j-тое предприятие. Тогда условие доставки и вывоза необходимого и имеющегося сырья обеспечиваются за счет выполнения следующих равенств:

x11+x12+x13+x14+x15 =140

x21+x22+x23+x24+x25 =180

x31+x32+x33+x34+x35 =160

x11 +x21 +x31 =60

x 12 +x22 +x32 =70

x 13 +x23 +x33 =120

x 14 +x24 +x34 =130

x 15 +x25 +x35=100


При этом общая стоимость перевозок составит

f(x)= 2x11+3x12+4x13+2x14+4x15 +8 x21+4x22+x23+4x24+x25+9 x31+7x32+3x33+7x34+2x35

Таким образом, математическая постановка данной транспортной задачи состоит в нахождении такого неотрицательного решения системы линейных уравнений, при котором целевая функция f(x) принимает минимальное значение.

Решить задачу с помощью надстройки Excel «Поиск решения». Находим оптимальный план поставок сырья и соответствующие ему транспортные расходы в таблице 12.

Таблица 12

Пункты

отправления

Пункты назначения
В1В2В3В4В5Запасы
А123424140
А284141180
А397372160
Потребности6070120130100
Транспортная таблица
А11400000140
А20018000180
А30000160160
Потребности6070120130100
Транспортные расходы780

Изменим, данные для того, чтобы получить открытую задачу. Для этого уменьшим запасы и увеличим потребности, получим:


Таблица 13

Таблица издержек

Пункты

отправления

Пункты назначения
В1В2В3В4В5Запасы
А123424140
А284141150
А397372100
Потребности60100120200100
Транспортная таблица
А10001400140
А20000150150
А30000100100
Потребности60100120200100
Транспортные расходы630

Лабораторная работа №4 (решение задач нелинейного программирования)

Для заданной математической постановки задачи НП (целевой функции f(x) и ограничений - равенств) выполнить следующие действия:

Найти все условные экстремумы функций методом множителей Лагранжа и выбрать среди них глобальный минимум (максимум);

Проверить результаты решения в табличном процессоре Excel;

(1)

Метод множителей Лагранжа

Необходимо перевести условие к виду

Составим вспомогательную функцию Лагранжа:

Для данной задачи получим:

(2)

Дифференцируем данную функцию по х1, х2, x3, и , получим систему уравнений:

(3)

Как известно, для того, чтобы найти экстремум функции многих переменных (если он вообще существует) необходимо приравнять к нулю все его частные производные и решить полученную систему уравнений.



Решив это уравнение, получаем:

х1=2,25, х2=-1,25, x3= 1,5, =-1,5 и =-3, F=12

Точка экстремума заданной функции f(x) - (х1, х2, x3), является точкой глобального минимума при заданных ограничениях функции.

Решение в табличном процессоре Excel. Проверим результаты решения в табличном процессоре Excel.

Решение задачи с помощью процессора Excel дало следующие результаты:

Таблица 13

х1х2x3
2,25-1,251,50
Целевая функция12,00
Ограничения4,00=4
6,00=6

Решения задачи обеими методами дали одинаковый результат.


Лабораторная работа №5 (задача динамического программирования об оптимальном распределении инвестиций)

Задача

Имеются четыре предприятия, между которыми необходимо распределить 100 тыс. усл.ед. средств. Значения прироста выпуска продукции на предприятиях в зависимости от выделенных средств X представлены в таблице. Составить оптимальный план распределения средств, позволяющий максимизировать общий прирост выпуска продукции.

Таблица 14

Xg1g2g3g4
00000
2014172220
4026202133
6035323746
8052616730
10061725842

Решение

Этап I. Условная оптимизация.

Шаг 1. k = 4. Предполагаем, что все средства 100 ден.ед. переданы на инвестирование четвертого предприятия. В этом случае максимальная прибыль составит F4(C4)= 46, данные представлены в таблице 15.

Таблица 15.

C4x4F4(C4)X*
020406080100
00 -- -- - 00
20- 20 - - --20 20
40 - -33 - --33 40
60 - - -46 --46 60
80 - - - -30-30 80
100 -- - - -4242 100

Шаг 2. k = 3. Определяем оптимальную стратегию инвестирования в третье и четвертое предприятия. При этом рекуррентное соотношение Беллмана будет иметь вид:

.

На его основании рассчитываются данные таблицы 16

Таблица 16.

C3X3F3(C3)X*
020406080100
00+0-----00
200+2022+0----2220
400+3322+2021+0---4220
600+4622+3321+2037+0--5520
800+3022+4621+3337+2067+0-6820
1000+4222+3021+4637+3367+2058+08720

Шаг 3. k = 2. Определяем оптимальную стратегию инвестирования во второе и третье предприятия. При этом рекуррентное соотношение Беллмана будет иметь вид:

.

На его основании рассчитываются данные таблицы 3.


Таблица 17.

C2X2F2(C2)X*
020406080100
00+0-----00
200+2217+0----220
400+4217+2220+0---420
600+5517+4220+2232+0--5920
800+6817+5520+4232+2261+0-7220
1000+8717+6820+5532+4261+2272+0870

Шаг 4. k = 1. Определяем оптимальную стратегию инвестирования в первое и остальные предприятия. При этом рекуррентное соотношение Беллмана будет иметь вид:

.

На его основе находятся данные таблицы 4.

Таблица 18.

C1X1F1(C1)X*
020406080100
00+0-----00
200+4814+0----220
400+9314+4826+0---420
600+13514+9326+4835+0--590
800+14914+13526+9335+4852+0-720
1000+16014+14926+13535+9352+4861+0870

По данным последней таблицы максимальных доход с четырех предприятий составил 87 д.ед. При этом первое и второе предприятия не принесут никакого дохода, в них нецелесообразно вкладывать инвестиции. В 3-е предприятие нужно вложить 80 д.ед. В 4-е предприятие нужно вложить 20 д.ед. В итоге останется 20-Получается, что оптимальный план Х*(0;0;80;20)


Лабораторная работа №5 (задача динамического программирования о выборе оптимального пути в транспортной сети)

Задача

В предложенной из начального пункта (1) в конечный пункт (11). Стоимость проезда между отдельными пунктами транспортной сети придумать самостоятельно и транспортной сети имеется несколько маршрутов по проезду представить в соответствующей таблице (T(i,j)). Необходимо определить оптимальный маршрут проезда из пункта 1 в пункт 11 с минимальными транспортными расходами.

18

Рисунок 2 – Транспортная сеть


Элементы матрицы маршрутов транспортной сети, а так же стоимость проезда из пункта i в пункт j (tij) представлена в таблице 19.

Таблица 19.

j

i

1234567891011
1-1012820------
2-----1511----
3-----69----
4-----710----
5-----138----
6-------121418-
7-------131516-
8----------8
9----------10
10----------10
11-----------

Решение

Этап I. Условная оптимизация.

Шаг 1. k = 1. F1(S) = ts10.

Таблица 18.

SJ=11F(S)J*
88811
9101011
10101011

Шаг 2. k = 2. Функциональное уравнение на данном шаге принимает вид:

.


Результаты расчета по приведенной формуле приведены в таблице:

Таблица 19.

SJ=8J=9J=10F(S)J*
612+814+1018+10208
713+815+1016+10218

Шаг 3. k = 3. Функциональное уравнение на данном шаге принимает вид:

.

Результаты расчета по приведенной формуле приведены в таблице:

Таблица 20.

SJ=6J=7F(S)J*
215+2011+21327
36+209+11266
47+2010+21276
513+208+21297

Шаг 4. k = 4. Функциональное уравнение на данном шаге принимает вид:

.

Результаты расчета по приведенной формуле приведены в таблице:

Таблица 21.

SJ=2J=3J=4J=5F(S)J*
110+3212+268+2720+29354

Этап II. Безусловная оптимизация.

На этапе условной оптимизации получено, что минимальные затраты на проезд из пункта 1 в пункт 11 составляют F4(1) = 35, что достигается следующим движением по магистралям. Из пункта 1 следует направиться в пункт 4, затем из него в пункт 6, затем в пункт 8 и из него в пункт 11. Таким образом, оптимальный маршрут будет J*(1;4;6;8;11)


Заключение

В курсовой работе были рассмотрены решения задач нелинейного программирования, линейного программирования, динамического программирования.

Для решения задачи линейного программирования были использованы следующие методы:

1.Графический метод;

2.Симплексный метод;

3.Постановка двойственной задачи;

4.Решение задачи в предложении целочисленности переменных;

Для решения задачи нелинейного программирования были использованы следующие методы:

1.Метод множителей Лагранжа

Для решения задачи динамического программирования были использованы следующие методы:

Метод об оптимальном распределении инвестиций;

Метод выбора стратегии обновления оборудования;

Метод выбора оптимального пути в транспортной сети.


Список литературы

1.Динамическое программирование: Рек к выполнению лаб. и практ.работ / Сост.: Шипилов С.А: НФИ КемГУ.- 2-е изд.перераб.- Новокузнецк. 2002.-19 с.

2.Динамическое программирование. Шипилов С.А.

3.Методы условной оптимизации: Рек. к выполнению лаб. и практ.работ / Сост.: Шипилов С.А: НФИ КемГУ.- 2-е изд.перераб.- Новокузнецк. 2002.-48 с.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно