это быстро и бесплатно
Оформите заказ сейчас и получите скидку 100 руб.!
Ознакомительный фрагмент работы:
С. Берколайко
[Решил добавить к уже выложенным доказательствам неравенства между средним арифметическим и средним геометрическим ещё одно. Оно не такое потрясное по оригинальности как доказательства Бора и Гурвица, а любопытно, скорее, простотой используемых средств и ловкостью автора. – E.G.A.]
Пусть a1, a2, ..., an – положительные числа, среди которых есть различные. Тогда выполняется неравенство Коши:
| (1) |
Обозначим левую часть неравенства Коши через Sn и докажем его в такой форме:
| (Sn ) n > a1 a2 ... an . | (2) |
Очевидно, не ограничивая общности, можно считать, что для некоторого k такого, что 1 ≤ k ≤ n – 1,
| a1 ≤ a2 ≤ ... ≤ ak ≤ Sn ≤ ak+1 ≤ ... ≤ an–1 ≤ an. | (3) |
Основой доказательства неравенства (2) будет неравенство
| (4) |
где 0 < a < b (см. рисунок). Заметим, что при a = b вместо (4) имеем
b – a b | = ln | b a | = | b – a a | . |
Из (3) и (4)
| (5) |
или
| (6) |
Опять-таки из (3) и (4)
| (7) |
или
| (8) |
Легко проверить, что левая часть неравенства (6) равна правой части неравенства (8). Значит, из (6) и (8)
| (9) |
Поскольку среди чисел a1, a2, ..., an есть различные, в цепочке неравенств (3) какие-то неравенства выполняются «строго». Тогда эти «строгие» неравенства перейдут в (5) или (7). Значит, по крайней мере, одно из неравенств (6), (8) тоже будет «строгим». Поэтому вместо (9) мы можем утверждать
| ln | ak+1 ak+2 ... an (Sn) n–k | < ln | (Sn)k a1 a2 ... ak | , |
или
ak+1 ak+2 ... an (Sn) n–k | < | (Sn)k a1 a2 ... ak | , |
откуда вытекает (2).
Если же a1 = a2 = ... = an, то, очевидно,
a1 + a2 + ... + an n | = | n | | a1 a2 ... an | . |
Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников
Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.
Цены ниже, чем в агентствах и у конкурентов
Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит
Бесплатные доработки и консультации
Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки
Гарантируем возврат
Если работа вас не устроит – мы вернем 100% суммы заказа
Техподдержка 7 дней в неделю
Наши менеджеры всегда на связи и оперативно решат любую проблему
Строгий отбор экспертов
К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»
Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован
Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн
Исследуйте на сходимость числовой знакоположительный ряд
Решение задач, Математика
Срок сдачи к 20 янв.
Решить 2 задачи по гидравлике, объединить результаты в одну расчётно-графическую работу.
Решение задач, Гидравлика
Срок сдачи к 17 янв.
Тема в задании нужно сделать курсовую по организации пар Севастополь...
Курсовая, Бухгалтерская и налоговая отчетность
Срок сдачи к 15 янв.
Анализ доходов, расходов и финансовых результатов деятельности организации по данным отчета о финансовых результатах
Курсовая, Бухгалтерский учет анализ и аудит
Срок сдачи к 26 янв.
Технологическая (проектно-технологическая) практика
Отчет по практике, Педагогическое образование
Срок сдачи к 16 февр.
"Контрабанда растений, содержащих наркотические средства, психотропные вещества или их прекурсоры, либо их частей, содержащих наркотические средства"
Презентация, Уголовное право
Срок сдачи к 21 янв.
Заполните форму и узнайте цену на индивидуальную работу!