Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Однородные и неоднородные системы линейных дифференциальных уравнений

Тип Реферат
Предмет Математика
Просмотров
696
Размер файла
308 б
Поделиться

Ознакомительный фрагмент работы:

Однородные и неоднородные системы линейных дифференциальных уравнений

Федеральное Агентство по образованию

государственное Образовательное Учреждение высшего профессионального образования

«Тюменский Государственный Нефтегазовый Университет»

Институт Нефти и Газа

Кафедра «математические методы в экономике»

Курсовая работа

по математическому анализу

Однородные и неоднородные системы линейных дифференциальных уравнений

Проверил: старший преподаватель

Тюмень 2007

Содержание

ВВедение

1 Системы линейных дифференциальных уравнений.

1.1 Общие сведения о линейных системах.

1.2 Метод сведения линейной системы к одному уравнению более высокого порядка.

1.3 Методы решения однородных линейных систем дифференциальных уравнений.

1.4 Методы решения неоднородных линейных систем дифференциальных уравнений.

2. Решение линейных систем дифференциальных уравнений.

2.1.Решение методом сведения линейной системы к одному уравнению более высокого порядка.

2.2. Решение однородных линейных систем дифференциальных уравнений.

2.2.1. Решение видоизмененным методом Эйлера

2.3.2. Решение методом неопределенных коэффициентов

ВВЕдение

1. Системы линейных дифференциальных уравнений.

1.1 Общие сведения о линейных системах.

Линейные системы – это системы дифференциальных уравнений вида

(1)

Где коэффициенты aij и fi – некоторые функции независимой переменной x. Будем считать их непрерывными; тогда для данной системы заведомо выполняются условия теоремы о существование и единственности решения задачи Коши. Если все fi=0, то система называется однородной, в противном случае она называется неоднородной. Система

(2)

Называется однородной системой, соответствующей неоднородной системе (1).

При изучении линейных систем удобно использовать матричные обозначения

Позволяющие записать систему (1) в виде одного матричного уравнения

(3)

Так же, как и в случае линейных уравнений, общее решение неоднородной системы представляет собой сумму частного решения этой системы и общего решения соответствующей ей однородной системы. В свою очередь, общее решение однородной системы имеет вид

(4)

Где С1,…,Сn- произвольные постоянные, а

-произвольные линейно независимые решения, называемые фундаментальным набором решений этой системы. Критерием линейной независимости этих решений является неравенство нулю определителя Вронского

(5)

1.2 Метод сведения линейной системы к одному уравнению более высокого порядка.

(Этот метод применим как для однородной, так и для неоднородной системы линейных дифференциальных уравнений.)

Один из методов интегрирования линейной системы заключается в сведении системы к одному уравнению n-ого порядка с одной неизвестной функцией. Продемонстрируем это на примере системы двух уравнений.

(6)

Дифференцируя (по x) обе части первого уравнения системы (6), находим

откуда, заменяя производные y1', y2' их выражениями из самой системы, имеем

.

Группируя в правой части, получим уравнение вида

(7)

Где коэффициенты b1, b2 и d1 определенным образом выражаются через коэффициенты aij и q1 и их производные. Комбинируя уравнение (7) с первым уравнением системы (6), получим

(8)

Предположим, что в рассматриваемой области изменения x определитель

отличен от нуля. Тогда систему (8) можно решить относительно y1 и y2, т.е. выразить y1и y2 через y’1 и y”2.

В результате приходим к уравнениям вида

(9)

. (10)

Первое из них представляет собой линейное дифференциальное уравнение второго порядка с одной неизвестной функцией y1(t). Заметим, что если в исходной системе (6) все коэффициенты aij постоянны, то уравнение (9) также является уравнением с постоянными коэффициентами. [ 3 стр 509-510]

1.3 Методы решения однородных линейных систем дифференциальных уравнений.

1) Сведение к одному уравнению n-ого порядка. (Этот метод мы разбирали выше)

2) Решение ЛОСДУ с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера).

Пусть дана система n линейных дифференциальных уравнений с n неизвестными функциями, коэффициенты которой постоянные:

(11)

Эту систему можно записать в виде одного матричного дифференциального уравнения

.

Здесь

[2 стр 169]

Ищем решение системы в виде:

X11ekt , X22ekt,……. Xnnekt . (12)

Требуется определить постоянные α1, α2,…, αn и k так, чтобы функции α1ekt, α2ekt,…,αnekt удовлетворяли системе уравнений (11). Подставим их в систему(1), получим:

Сократим на ekt. Перенося все члены в одну сторону и собирая коэффициенты при α1, α2,…., αn , получим систему уравнений

Выберем α1, α2,…., αn и k такими, чтобы удовлетворялась система (13).Эта система есть система линейных однородных алгебраических уравнений относительно α1, α2,…., αn. Составим определитель системы (13):

(14)

Если k таково, что определитель ∆ отличен от нуля, то система (13) имеет только нулевые решения α12=…=αn=0,а следовательно, формулы (12) дают только тривиальные решения:

X1(t)=X2(t)=…=X(t)=0.

Таким образом, нетривиальные решения (12) мы получим только при таких k,при которых определитель (14) обращается в нуль. Мы приходим к уравнению n-ого порядка для определения k:

(15)

Это уравнение называется характеристическим уравнением для системы (1),его корни называются корнями характеристического уравнения.

Рассмотрим несколько случаев.

Случай 1. Корни характеристического уравнения действительны и различны. Обозначим через k1, k2,….kn корни характеристического уравнения. Для каждого корня kj напишем систему (13) и определим коэффициенты

α1(i)2(i),…, αn (i).

Можно показать, что один из них произвольный, его можно считать равным единице. Таким образом, получаем:

для корня k1 решение системы (11)

Для корня k2 решение системы (1)

……………………………………………………….

для корней kn решение системы (1)

Путем непосредственной подстановки в уравнения можно убедиться, что система функций

(16)

где С1, С2,….,Сn -произвольные постоянные, тоже является решением системы дифференциальных уравнений (11). Это есть общее решение системы (11). Легко показать, что можно найти такие значения постоянных, при которых решение будет удовлетворять заданным начальным условиям.

Случай 2. Корни характеристического уравнения различные, но среди них есть комплексные. Пусть среди корней характеристического уравнения имеется два комплексных сопряженных корня:

k1 = α+iβ, k2 = α-iβ.

Этим корням будут соответствовать решения

(j = 1, 2, …,n), (17)

(j = 1, 2, …,n), (18)

Коэффициенты α j(1) и α j(2) определяются из системы уравнений (13).

Можно показать, что действительные и мнимые части комплексного решения тоже являются решениями. Таким образом, мы получаем два частных решения:

(19)

Где - действительные числа, определяемые через и . Соответствующие комбинации функций (18) войдут в общее решение системы. [2 стр 112-115]

Случай 3. Характеристическое уравнение имеет единственный корень k (кратности 2), которому соответствуют два линейно независимых собственных вектора P1 и P2 (т.е. кратность корня совпадает с числом линейно независимых собственных векторов). Векторы P1 и P2 порождают два линейно независимых решения

И общее решение, так же как и в случае 1, находится по формуле (4) .

Случай 4. Характеристическое уравнение имеет единственный корень k (кратности 2), которому с точностью до постоянного множителя соответствует один собственный вектор P1 (т.е. кратность корня больше числа линейно независимых собственных векторов). В этом случае для отыскания решения целесообразно применить метод неопределенных коэффициентов. Согласно этому методу общее решение необходимо искать в форме

Где постоянные Сij требуют определения путем подстановки этих выражений в исходную однородную систему.

Замечание. Для решения однородных систем в случае, когда корень характеристического уравнения λ кратный и ему соответствует единственный собственный вектор P1, может быть применен метод присоединения векторов.

Суть его такова. Пусть P2 – вектор-столбец, являющийся решением уравнения

(20)

тогда однородная система

(21)

имеет два линейно независимых решения

.

Покажем, что Y2 является решением. Имеем

.

Учитывая, что P1 и - собственный вектор, а P2 удовлетворяет условию (20), получаем

.

Нетрудно также убедиться, что Y1 и Y2 линейно независимы. Следовательно, они образуют фундаментальный набор решений, и общее решение может быть найдено по формуле (4).

В общем случае корню характеристического уравнения λ кратности k>1, имеющему один собственный вектор P1,соответствует k линейно независимых решений

, (22)

Где присоединенные векторы P2,P3,…,Pk являются последовательными решениями следующих алгебраических систем

(23) [3 стр 519-522]

1.4 Методы решения неоднородных линейных систем дифференциальных уравнений.

1) Для решения неоднородных линейных систем применяются методы, аналогичные методам, используемым для решения неоднородных линейных уравнений. Одним из таких методов является метод вариации постоянных. Продемонстрируем его суть на следующем примере.

Пример:

Решение. Решая характеристическое уравнение

Находим корни λ1=-1, λ2=4. Собственными векторами, отвечающими найденным собственным значениям, будут соответственно

Следовательно, общее решение соответствующей однородной системы имеет вид

.

Решение неоднородного уравнения в соответствии с методом вариации постоянной будем искать в форме

Для нахождения С1(x) и C2(x) подставив выражение для Y в исходную систему, получим

Отсюда находим:

где - производные постоянные. Таким образом, решение исходной системы будет

2) В случае, когда столбец свободных членов системы имеет специальный вид

(24)

Где Pm(x) и Qk(x) – вектор-столбцы, элементами которых являются многочлены от х степени, не превышающей соответственно n и k, для отыскания частного решения уравнения целесообразно воспользоваться методом неопределенных коэффициентов. Для систем он имеет определенную специфику. Суть метода такова.

Если число γ = a + bi не является корнем характеристического уравнения, то частное решение ищется в виде

где и - вектор-столбцы, элементами которых являются многочлены от x степени m=max{k,n}.

Если же γ является корнем характеристического уравнения кратности l (резонансный случай), то частное решение ищется в форме

[ 3 стр 529-531]

2. Решение линейных систем дифференциальных уравнений.

2.1.Решение методом сведения линейной системы к одному уравнению более высокого порядка.

2.2. решение однородных линейных систем дифференциальных уравнений.

2.2.1. Решение видоизмененным методом Эйлера

Случай 1

Пример1.

Решение. Составляем характеристическое уравнение

Или . Находим корни:

Решение системы ищем в виде

и

.

Составим систему (3) для корня и определяем и :

Или

Откуда . Полагая , получаем . Таким образом, мы получили решение системы:

Составим далее систему (3) для корня и определяем и :

Откуда и =1, =1. Получаем второе решение системы:

Общее решение системы будет (см (6))

Пример2.

Решение. Составим характеристическое уравнение матрицы системы

или

Находим его корни:

Составим систему (3) для корня и определяем и :

или =>

Откуда . Полагая , получаем .

Таким образом, мы получили решение системы:

Составим далее систему (3) для корня и определяем и :

Откуда и =1, =1.

Получаем второе решение системы:

Общее решение системы будет

Пример3.

Решение. Составим характеристическое уравнение матрицы системы

Раскрывая определитель, находим

Составим систему (3) для корня

одно из которых - следствие двух других. Возьмем, например, первые два уравнения:

Отсюда

Приняв k=1/4,получаем собственный вектор (2;1;-2).

При λ=2 имеет систему

Используя первые два уравнения (третье – их следствие), находим

Полагая k=1, находим собственный вектор (7;3;-8).

При λ=3 имеет систему

Из последнего уравнения находим Подставляем это значение p1 в первое уравнение и находим Приняв получаем т.е. собственный вектор (3; 1; -3).

Фундаментальная система решении:

Общее решение записываем в виде

Случай 2.

Пример 1.

Решение. Составляем характеристическое уравнение

или

и находим его корни:

Подставляем в систему (3) и определяем и :

или

Откуда . Полагая , получаем .

Пишем решение (7):

Подставляя в систему (3), находим:

.

Получим вторую систему решений (8):

Перепишем решения:

или

За системы частных решений можно взять отдельно действительные части и отдельно мнимые части

Общим решением системы будет

Пример 2.

Решение. Составляем характеристическое уравнение

или

Характеристические числа: λ1=1, λ2=i, λ3= - i.

При λ1=1 для определения собственного вектора получаем систему уравнений

Эта система определяет собственный вектор (1; 1; 0).

При λ2=i получаем систему уравнений

Эта система определяет собственный вектор (1; i; 1-i).

При λ3= - i получаем систему уравнений

Эта система определяет собственный вектор (1; -i; 1+i).

Значению λ1=1 соответствуют решения

Значению λ2=i соответствуют решения

Значению λ3= - i соответствуют решения

Отделяя действительные части, получим решения

до решать

Случай 4.

Пример 1.

Решение. Характеристическое уравнение

Имеет единственный корень λ=2 (кратности 2). Ему соответствует единственный собственный вектор

Поэтому решение в этом случае будем искать в виде

Подставляя выражения для y1 и y2 в исходную систему, находим

Отсюда получаем систему

Решая её, находим

Где P1, P2 – произвольные постоянные. Таким образом, общее решение системы имеет вид

Пример 2.

Решение. Составим характеристическое уравнение системы


Раскрывая определитель, получаем

Данное уравнение после несложных преобразовании принимает вид

Отсюда находим: (простой корень), ему соответствует собственный вектор

и (корень кратности 2), которому соответствуют два линейно независимых собственных вектора

Следовательно, общее решение системы имеет вид

2.3. решение неоднородных линейных систем дифференциальных уравнений.

2.3.1. Решение методом вариации постоянных.

Пример 1.

Решение. Решая характеристическое уравнение

Находим корни . Собственными векторами, отвечающими найденным собственным значениям, будут соответственно

,

Следовательно, общее решение соответствующей однородной системы имеет вид

Решение неоднородного уравнения в соответствии с методом вариации постоянной будем искать в форме

Для нахождения С1(x) и С2(x) подставив выражение для Y в исходную систему, получим

Отсюда находим:

Где - произвольные постоянные. Таким образом, решение исходной системы будет

2.3.2. Решение методом неопределенных коэффициентов

Пример 1.

Решение. Решая характеристическое уравнение системы

Находим корни . Собственными векторами, отвечающими найденным собственным значениям, будут соответственно

,

Следовательно, общее решение соответствующей однородной системы имеет вид

Теперь найдем частное решение. В рассматриваемом случае элементы столбца свободных членов представляют собой многочлены степени, не превышающей 1, и так как число γ=0 не совпадает с корнями характеристического уравнения, то частное решение неоднородной системы будем искать в виде

Где p, q, c и d – некоторые постоянные. Для их определения подставим выражение для в исходную систему. Получим

Отсюда

Решив эту систему, находим p=1, q= - 1, c= - 2 и d=1. Следовательно,

Так как общее решение неоднородной системы уравнения Y представляет собой сумму частного решения и общего решения соответствующей однородной системы, то окончательно получаем

Пример 2.

Решение. Решая характеристическое уравнение системы

Его корни будут . Им соответствуют собственные векторы

,

Следовательно, общее решение соответствующей однородной системы имеет вид

Теперь найдем частное решение. В рассматриваемом случае число γ= 1 совпадает с корнем λ1 характеристического уравнения (резонансный случай). Так как элементы столбца свободных членов представляют собой многочлены нулевой степени, частное решение неоднородной системы будем искать в виде

где p, q, c и d – некоторые постоянные. Подставим выражение для в исходную систему. Получим

Отсюда

Решив эту систему, находим

Полагая с =1, получаем d = 5. Следовательно,

Таким образом, общее решение системы имеет вид

Список используемой литературы

1. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Выцсшая математика в упражнениях и задачах. –М.: “Высшая школа”, 1986.

2. Пискунов Н.С. Дифференциальное и интегральное исчисления.- М.:”Наука”, 1978.

3. Солодовников А.С., Бабайцев В.А., Браилов А.В., Шандра И.Г. Математика в экономике.- М.:”Финансы и статистика”, 2003.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно