Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Линейное и нелинейное программирование

Тип Реферат
Предмет Математика
Просмотров
1857
Размер файла
438 б
Поделиться

Ознакомительный фрагмент работы:

Линейное и нелинейное программирование

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Севастопольский национальный технический университет

Кафедра кибернетики и вычислительной техники

Пояснительная записка

к курсовому проекту

по дисциплине

«Прикладная математика»

Выполнил: ст. гр. М-21д

Ткаченко К. С.

зач. книжка № 040xxx

вариант № 22

Проверил: ст. преп.

Балакирева И. А.

Севастополь – 2006


Содержание

Введение. 4

1 Общая формулировка задания на курсовой проект. 5

2 Линейное программирование. 7

2.1 Задача линейного программирования. 7

2.1.1 Постановка задачи линейного программирования. 7

2.1.2 Математическая модель задачи линейного программирования. 8

2.1.3 Графический метод. 9

2.1.4 Алгебраический метод. 10

2.1.5 Метод симплекс-таблицы.. 12

2.1.6 Метод допустимого базиса. 14

2.1.7 Решение двойственной задачи. 17

2.2 Задача целочисленного линейного программирования. 19

2.2.1 Постановка задачи целочисленного линейного программирования. 19

2.2.2 Метод Гомори. 20

2.2.3 Метод ветвей и границ. 22

2.3 Задача целочисленного линейного программирования с булевскими переменными. 24

2.3.1 Постановка задачи целочисленного линейного программирования с булевскими переменными. 24

2.3.2 Метод Баллаша. 25

2.3.3 Определение снижения трудоемкости вычислений. 26

3 Нелинейное программирование. 27

3.1 Задача поиска глобального экстремума функции. 27

3.1.1 Постановка задачи поиска глобального экстремума функции. 27

3.1.2 Метод поиска по координатной сетке с постоянным шагом и метод случайного поиска. Сравнение результатов вычислений. 28

3.2 Задача одномерной оптимизации функции. 29

3.2.1 Постановка задачи одномерной оптимизации функции. 29

3.2.2 Метод дихотомии. 30

3.2.3 Метод Фибоначчи. 31

3.2.4 Метод кубической аппроксимации. 32

3.3 Задача многомерной оптимизации функции. 33

3.3.1 Постановка задачи многомерной оптимизации функции. 33

3.3.2 Метод Хука – Дживса. 34

3.3.3 Метод наискорейшего спуска (метод Коши)36

3.3.4 Метод Ньютона. 37

3.3.5 Сравнение результатов вычислений. 38

Заключение. 39

Библиографический список. 40

ПРИЛОЖЕНИЕ. 41

А Текст программы глобальной многомерной оптимизации. 41

Б. Результаты работы программы.. 44

Введение

Современный этап развития человечества отличается тем, что на смену века энергетики приходит век информатики. Происходит интенсивное внедрение новых технологий во все сферы человеческой деятельности. Встает реальная проблема перехода в информационное общество, для которого приоритетным должно стать развитие образования. Изменяется и структура знаний в обществе. Все большее значение для практической жизни приобретают фундаментальные знания, способствующие творческому развитию личности. Важна и конструктивность приобретаемых знаний, умение их структурировать в соответствии с поставленной целью. На базе знаний формируются новые информационные ресурсы общества. Формирование и получение новых знаний должно базироваться на строгой методологии системного подхода, в рамках которого отдельное место занимает модельный подход. Возможности модельного подхода крайне многообразны как по используемым формальным моделям, так и по способам реализации методов моделирования. Физическое моделирование позволяет получить достоверные результаты для достаточно простых систем.

В настоящее время нельзя назвать область человеческой деятельности, в которой в той или иной степени не использовались бы методы моделирования. Особенно это относится к сфере управления различными системами, где основными являются процессы принятия решений на основе получаемой информации.

1 Общая формулировка задания на курсовой проект

Вариант задания для задачи линейного программирования (ЗЛП) представляет собой область допустимых решений ЗЛП и целевую функцию. Для того чтобы определить, какое значение должна достигать целевая функция – минимальное или максимальное, необходимо найти градиент целевой функции. Если направление градиента совпадает с направлением стрелки у целевой функции в варианте задания, то в задаче определяется максимальное значение целевой функции, иначе – минимальное.

Итак, задание по решению ЗЛП состоит в следующем: построить математическую модель ЗЛП согласно варианту; получить решение ЗЛП графическим методом; решить ЗЛП алгебраическим методом; решить ЗЛП методом симплекс-таблицы; определить допустимое решение ЗЛП методом введения искусственного базиса; построить ЗЛП, двойственную данной, решить эту задачу и исследовать взаимосвязь между решениями взаимодвойственных задач.

Вариант для задачи целочисленного линейного программирования (ЗЦЛП) представляет собой область допустимых решений ЗЛП и целевую функцию. Задание состоит в следующем: решить ЗЦЛП, при условии целочисленности всех переменных, входящих в задачу методом ветвей и границ и методом отсекающих плоскостей (методом Гомори).

Вариант для задачи целочисленного линейного программирования с булевскими переменными составляется студентом самостоятельно с учетом следующих правил: в задаче используется не менее 5 переменных, не менее 4 ограничений, коэффициенты ограничений и целевой функции выбираются произвольно, но таким образом, чтобы система ограничений была совместна. Задание состоит в том, чтобы решить ЗЦЛП с булевскими переменными, используя алгоритм Баллаша и определить снижение трудоемкости вычислений по отношению к решению задачи методом полного перебора.

Задание на поиск глобального экстремума функции состоит в написании программы. Программа для поиска экстремума функции может быть разработана на любом алгоритмическом языке. Задание состоит в следующем: 1) найти точку глобального экстремума функции f(X) методом поиска по координатной сетке с постоянным шагом; 2) найти точку глобального экстремума функции f(X) методом случайного поиска; 3)сравнить результаты вычислений.

Задание для нахождения одномерного локального экстремума функции (одномерная оптимизация) состоит в том, чтобы выполнить поиск минимума заданной функции методом дихотомии (3-4 итерации), уточнить интервал поиска методом Фибоначчи (3 итерации) и завершить поиск методом кубической аппроксимации.

Задание для нахождения многомерного локального экстремума функции (многомерная оптимизация) состоит в том, чтобы минимизировать функцию, применяя следующие методы: нулевого порядка – Хука-Дживса, первого порядка – наискорейшего спуска (Коши), второго порядка – Ньютона, и провести сравнительный анализ методов оптимизации по количеству итераций, необходимых для поиска экстремума при фиксированной точности и начальных координатах поиска X(0)=[-1,-1]T.

2 Линейное программирование

2.1 Задача линейного программирования

2.1.1 Постановка задачи линейного программирования

Построить математическую модель ЗЛП согласно варианту. Получить решение ЗЛП графическим методом. Решить ЗЛП алгебраическим методом. Решить ЗЛП методом симплекс-таблицы. Определить допустимое решение ЗЛП методом введения искусственного базиса. Построить ЗЛП, двойственную данной, решить эту задачу и исследовать взаимосвязь между решениями взаимодвойственных задач.

2.1.2 Математическая модель задачи линейного программирования

AB: ; ;

BC: ; ;

CD: ; ;

DE: ; ;

F: ; ;

Математическая модель:

2.1.3 Графический метод

Вычисляем значение целевой функции во всех вершинах симплекса и выбираем из них наименьшее. Это и будет оптимальное решение.

FA = 1

FB = -8

FC = -14

FD = 0

FE = 3

C(2, 4)

F = -14

2.1.4 Алгебраический метод

x2, x4, x5, x6 – базисные переменные, x1, x3 – свободные переменные

x1↑F↑ x3↑F↓ Выбираем x3 ↔ x4

x2, x3, x5, x6 – базисные переменные, x1, x4 – свободные переменные

x1↑F↓ x4↑F↑ Выбираем x1 ↔ x5

x1, x2, x3, x6 - базисные переменные, x4, x5 – свободные переменные

x1↑F↑ x4↑F↑

X=(2, 4, 7, 0, 0, 5)

F = -14

2.1.5 Метод симплекс-таблицы

Приведем к каноническому виду:

x2, x4, x5, x6 – базисные переменные, x1, x3 – свободные переменные

bx1x3
x212-1
1-31
x41-311
1-31
x512-126
-26-2
x643-1
1-31
F-4-94
-412-4
bx1x4
x22-11
21/5-2/5
x31-31
63/5-6/5
x5105-22
21/5-2/5
x6501
000
F-83-4
-6-3/56/5
bx5x4
x241/53/5
x373/5-1/5
x121/5-2/5
x6501
F-14-3/5-14/5

X = (2, 4, 7, 0, 0, 5)

F = -14

2.1.6 Метод допустимого базиса

bx1x2x3x4x5x6
F0-140000
1/21/21/2-1/2000
ξ1121-10001/2
1/21/21/2-1/2000
ξ22-11010014/3
1/21/21/2-1/2000
ξ3143200103
-3/2-3/2-3/23/2000
ξ431-10001
-1/2-1/2-1/21/2000
f2053-1111
-5/2-5/2-5/25/2000
bξ1x2x3x4x5x6
F1/21/29/2-1/2000
5/2-1/2-3/21001
x11/21/21/2-1/2000
5/2-1/2-3/21001
ξ25/21/23/2-1/2100
5/2-1/2-3/21001
ξ325/2-3/21/23/201025/3
-15/23/29/2-300-3
ξ45/2-1/2-3/21/20015
5-1-32002
f35/2-5/21/23/2111
-15/23/29/2-300-3
bξ1x2ξ4x4x5x6
F3031001
-30-3/59/50-3/59/5
x130-11001
101/5-3/501/5-3/5
ξ25001101
0000000
ξ3505-301-31
101/5-3/501/5-3/5
x35-1-32002
303/5-9/503/5-9/5
f10-15-311-2
-50-130-13
bξ1ξ3ξ4x4x5x6
F00-3/514/50-3/514/5
-1400-14/5-14/50-14/5
x1401/22/501/52/510
-200-2/5-2/50-2/5
ξ250011015
5001101
x2101/5-3/501/5-3/5
3003/53/503/5
x38-13/51/503/51/540
-100-1/5-1/50-1/5
f5-1-10101
-500-1-10-1
bξ1ξ3ξ4x4x5ξ2
F-140-3/50-14/5-3/5-14/5
x1201/50-2/51/5-2/5
x65001101
x2401/503/51/5-3/5
x37-13/50-1/53/5-1/5
f0-1-1-100-1
bx4x5

F

-14

-14/5-3/5
x6

5

10
x2

4

3/51/5
x3

7

-1/53/5
x1

2

-2/5

1/5

Допустимое базисное оптимальное решение:

X = (2, 4, 7, 0, 0, 5)

F = -14

2.1.7 Решение двойственной задачи

Прямая задача:

Двойственная задача:

Приводим к каноническому виду:

y1, y3 – базисные переменные, y2, y4, y5, y6 – свободные переменные

by2y4y5y6
y1145-52-314/5
14/51/5-12/5-3/5
y393-31-23
-42/5-3/53-6/59/5
Ф’11235-4012-25
-98-735-1421
by2y4y5y6
y114/51/5-12/5-3/5
y33/5-3/50-1/5-1/5
Ф’14-7-5-2-4
x1x2x3x4x5x6
y5y6y1y2y3y4
247005

F’ = Ф’ = 14

X = (2,4,7,0,0,5)

F= -F’ = -14

2.2 Задача целочисленного линейного программирования

2.2.1 Постановка задачи целочисленного линейного программирования

Решить ЗЦЛП, при условии целочисленности всех переменных, входящих в задачу, методом ветвей и границ и методом отсекающих плоскостей (методом Гомори).

2.2.2 Метод Гомори

x3, x4 – базисные переменные, x1, x2 – свободные переменные

bx1x2
x3112311/2
-5-1/2-1/2
x4104110/4
5/21/41/4
F’021
-5-1/2-1/2
bx4x2
x36-1/25/212/5
12/5-1/52/5
x15/21/41/410
-3/51/20-1/10
F’-5-1/21/2
-6/51/10-1/5
bx1x2
x312/5-1/52/5
x419/103/10-1/10
F’-31/5-2/5-1/5

X = (19/10, 12/5, 0, 0)

F = -F’ = 31/5

Составляем неравенство Гомори:

bx4x3
F’-31/5-2/5-1/5
1/51/10-1/2
x212/5-1/52/5
-2/5-1/51
x119/103/10-1/10
1/10-1/4
u2-2/5-1/5-2/5
11/2-5/2
bx4u2
F’-6-3/10-1/2
x22-2/51
x127/20-1/4
x311/2-5/2

X = (2, 2, 1, 0)

F = -F’ = 6

2.2.3 Метод ветвей и границ

bx1x2
x3

12/5

-1/52/5
x4

19/10

3/10-1/10
F’

-31/5

-2/5-1/5

Задача № 1

Приводим к каноническому виду:

x3, x4, x5 – базисные переменные, x1, x2 – свободные переменные

bx1x2
x3112311/2
-5-1/2-1/2
x410415/2
5/21/41/4
x5201
000
F’021
-5-1/2-1/2
bx4x2
x36-1/25/212/5
-50-5/2
x15/21/41/410
-1/20-1/4
x52012
201
F’-5-1/21/2
-10-1/2
bx4x5
x31-1/2-5/2
x121/4-1/4
x2201
F’-6-1/2-1/2

X = (2, 2, 1, 0, 0)

F’ = -6

F = -F’ = 6

Задача № 2

Решаем задачу с x2 ≥ 3 в подсистеме «Поиск решения» системы Excel. Получаем допустимое не оптимальное решение F = 5, X = (1, 3)

=2*$B$1+$B$21=2*$B$1+3*$B$211
3=4*$B$1+$B$210
=$B$23
511111
3710
33
Ограничения
ЯчейкаИмяЗначениеФормулаСтатусРазница
$C$111$C$1<=$D$1связанное0
$C$27$C$2<=$D$2не связан.3
$C$33$C$3>=$D$3связанное0

2.3 Задача целочисленного линейного программирования с булевскими переменными

2.3.1 Постановка задачи целочисленного линейного программирования с булевскими переменными

Составить самостоятельно вариант для задачи целочисленного линейного программирования с булевскими переменными с учетом следующих правил: в задаче используется не менее 5 переменных, не менее 4 ограничений, коэффициенты ограничений и целевой функции выбираются произвольно, но таким образом, чтобы система ограничений была совместна. Задание состоит в том, чтобы решить ЗЦЛП с булевскими переменными, используя алгоритм Баллаша и определить снижение трудоемкости вычислений по отношению к решению задачи методом полного перебора.

2.3.2 Метод Баллаша

x4x3x2x1x5Выполнение ограниченийЗначение F
012345
1000000Fф=0
20000144
30001017
40001161
50010013
60010157
70011030
80011174
901000-10+++++Fф=-10
100100134
11010107
120101151
13011003
140110147
150111020
160111164
1710000-49+++++Fф=-49
1810001-5
1910010-32
201001112
2110100-36
22101018
2310110-19
241011125
2511000-59+++++Fф=-59
2611001-15
2711010-42
28110112
2911100-46
3011101-2
3111110-29
321111115

Фильтрующее ограничение:

2.3.3 Определение снижения трудоемкости вычислений

Решение задачи методом полного перебора составляет 6*25=192 вычисленных выражения. Решение задачи методом Баллаша составляет 3*6+(25-3)=47 вычисленных выражений. Итого снижение трудоемкости вычислений по отношению к решению задачи методом полного перебора составляет .

3 Нелинейное программирование

3.1 Задача поиска глобального экстремума функции

3.1.1 Постановка задачи поиска глобального экстремума функции

Необходимо написать программа для поиска экстремума функции. Задание состоит в следующем: 1) найти точку глобального экстремума функции f(X) методом поиска по координатной сетке с постоянным шагом; 2) найти точку глобального экстремума функции f(X) методом случайного поиска; 3)сравнить результаты вычислений.

3.1.2 Метод поиска по координатной сетке с постоянным шагом и метод случайного поиска. Сравнение результатов вычислений

Метод поиска глобального минимума, называемый методом поиска по координатной сетке, является надежным, но применим только для задач малой размерности (n<4). Неправильный выбор начального шага сетки может привести к тому, что в действительности один из локальных минимумов может быть принят как глобальный. Из всех значений целевой функции, вычисленных в узлах координатной сетки, выбирается минимальное. Результат: число испытаний 905, f(X*) = -2.500, X*=(-0.500; 2.000)

Метод случайного поиска характеризуется намеренным введением элемента случайности в алгоритм поиска. Этот метод предполагает наличие генератора случайных чисел, обращаясь к которому, в любой нужный момент времени можно получить реализацию случайного вектора с заданным законом распределения. Результат: число испытаний 299, f(X*) = -2.469, X*=(-0.677; 2.173).

Расчет в системе MathCAD: f(X*) = -2.500, X*=(-0.500; 2.000)

Как видим, метод случайного поиска сократил число испытаний на 66%, при этом относительная погрешность составляет 1%. Т.е. мы достигли значительного сокращения вычислений с небольшой относительной погрешностью.

3.2 Задача одномерной оптимизации функции

3.2.1 Постановка задачи одномерной оптимизации функции

Задание для нахождения одномерного локального экстремума функции (одномерная оптимизация) состоит в том, чтобы выполнить поиск минимума заданной функции методом дихотомии (3-4 итерации), уточнить интервал поиска методом Фибоначчи (3 итерации) и завершить поиск методом кубической аппроксимации.

3.2.2 Метод дихотомии

Итерация 1

Итерация 2

Итерация 3

Итерация 4

После четырех итераций получим:

3.2.3 Метод Фибоначчи

Итерация 1

Итерация 2

Итерация 3

Итерация 4

Поиск окончен. Длина интервала:

3.2.4 Метод кубической аппроксимации

3.3 Задача многомерной оптимизации функции

3.3.1 Постановка задачи многомерной оптимизации функции

Минимизировать функцию, применяя следующие методы: нулевого порядка – Хука-Дживса, первого порядка – наискорейшего спуска (Коши), второго порядка – Ньютона, и провести сравнительный анализ методов оптимизации по количеству итераций, необходимых для поиска экстремума при фиксированной точности и начальных координатах поиска X(0)=[-1,-1]T.

3.3.2 Метод Хука – Дживса

Итерация 1

1 Исследующий поиск

2 Поиск по образцу

Итерация 2

1 Исследующий поиск

2 Поиск по образцу

Итерация 3

1 Исследующий поиск

2 Поиск по образцу

Поиск завершен

3.3.3 Метод наискорейшего спуска (метод Коши)

Итерация 1. Счет итераций k = 0

Итерация 2. Счет итераций k = 1

Поиск завершен

3.3.4 Метод Ньютона

3.3.5 Сравнение результатов вычислений

Метод Хука-Дживса сходится за три итерации, при этом происходит вычисление значения функции в 13 точках, всего 38 вычислений. Метод наискорейшего спуска (метод Коши) сходится за одну итерацию, 9 вычислений. Метод Ньютона сходится за одну итерация, 9 вычислений. Методы Коши и Ньютона в данном случае сходятся за одну итерацию, поскольку функция представляет собой функцию для сферы (линии уровня – концентрические окружности) и направление, противоположное градиенту функции, направлено на точку минимума. Из этого можно сделать вывод, что в случае функций такого вида использование метода Хука-Дживса нерационально.

Заключение

Процесс проектирования информационных систем, реализующих новую информационную технологию, непрерывно совершенствуется. В центре внимания инженеров-системотехников оказываются все более сложные системы, что затрудняет использование физических моделей и повышает значимость математических моделей и машинного моделирования систем. Машинное моделирование стало эффективным инструментом исследования и проектирования сложных систем. Актуальность математических моделей непрерывно возрастает из-за их гибкости, адекватности реальным процессам, невысокой стоимости реализации на базе современных ПЭВМ. Все большие возможности предоставляются пользователю, т. е. специалисту по моделированию систем средствами вычислительной техники. Особенно эффективно применение моделирования на ранних этапах проектирования автоматизированных систем, когда цена ошибочных решений наиболее значительна.

Современные вычислительные средства позволили существенно увеличить сложность используемых моделей при изучении систем, появилась возможность построения комбинированных, аналитико-имитационных моделей, учитывающих все многообразие факторов, имеющих место в реальных системах, т. е. использованию моделей, более адекватных исследуемым явлениям.

Библиографический список

1 Лященко И.Н. Линейное и нелинейное программирования / И.Н.Лященко, Е.А.Карагодова, Н.В.Черникова, Н.З.Шор. – К.: «Высшая школа», 1975, 372 с.

2 Методические указания для выполнения курсового проекта по дисциплине «Прикладная математика» для студентов специальности «Компьютерные системы и сети» дневной и заочной форм обучения / Сост.: И.А.Балакирева, А.В.Скатков– Севастополь: Изд-во СевНТУ, 2003. – 15 с.

3 Методические указания по изучению дисциплины «Прикладная математика», раздел «Методы глобального поиска и одномерной минимизации» / Сост. А.В.Скатков, И.А.Балакирева, Л.А.Литвинова – Севастополь: Изд-во СевГТУ, 2000. – 31с.

4 Методические указания для изучения дисциплины «Прикладная математика» для студентов специальности «Компьютерные системы и сети» Раздел «Решение задач целочисленного линейного программирования» дневной и заочной форм обучения / Сост.: И.А.Балакирева, А.В.Скатков – Севастополь: Изд-во СевНТУ, 2000. – 13 с.

ПРИЛОЖЕНИЕ

А Текст программы глобальной многомерной оптимизации

{$APPTYPE CONSOLE}

program GlobalMinimize;

const

large = 10e99;

var

a1, a2, b1, b2 : real;

a1n, a2n, b1n, b2n : real;

fmin, x1, x2 : real;

alpha, dV, eps : real;

Rho, P : real;

fT, fS : real;

d1, d2, dx1, dx2 : real;

x1min, x2min : real;

i, N : integer;

t : boolean;

function f(x1, x2 : real) : real;

begin

f := 2*sqr(x1) + 2*x1*x2 + sqr(x2) - 2*x1 - 3*x2

end;

function ceil(x : real) : integer;

var a : integer;

begin

a := trunc(x);

if frac(x) > 0 then

a := a + 1;

ceil := a

end;

function max(a, b : real) : real;

begin

if a > b then

max := a

else

max := b

end;

function min(a, b : real) : real;

begin

if a < b then

min := a

else

min := b

end;

begin

randomize;

writeln('Поиск глобального многомерного минимума функции');

writeln('(для курсового проекта по прикладной математике)');

writeln('Автор: Ткаченко К.С. М-21д');

writeln;

writeln('Введите интервал изменения x1');

write(' Введите a1 : '); readln(a1);

write(' Введите b1 : '); readln(b1);

writeln('Введите интервал изменения x2');

write(' Введите a2 : '); readln(a2);

write(' Введите b2 : '); readln(b2);

write('Введитепогрешность eps : '); readln(eps);

write('Введите вероятность поиска P : '); readln(P);

write('Введите коэффициент alpha : '); readln(alpha);

write('Введите коэффициент dV : '); readln(dV);

writeln;

writeln('Алгоритм поиска глобального минимума по координатной '+

'сетке с равномерным шагом');

writeln;

t := false; N := 0;

fS := large; fmin := large;

a1n := a1; a2n := a2; b1n := b1; b2n := b2;

repeat

d1 := b1n - a1n; d2 := b2n - a2n;

dx1 := d1 / alpha; dx2 := d2 / alpha;

x1 := a1n; x2 := a2n;

fT := f(x1, x2);

N := N + 1;

if fT < fmin then

begin

fmin := fT;

x1min := x1; x2min := x2;

end;

repeat

repeat

x1 := x1 + dx1; (* Шаг 1 *)

fT := f(x1, x2);

N := N + 1;

if fT < fmin then (* Шаг 2 *)

begin

fmin := fT;

x1min := x1; x2min := x2;

end;

until x1 > b1n; (* Шаг 3 *)

x1 := a1n; x2 := x2 + dx2; (* Шаг 4 *)

fT := f(x1, x2); (* Шаг 5 *)

N := N + 1;

if fT < fmin then (* Шаг 6 *)

begin

fmin := fT;

x1min := x1; x2min := x2;

end;

until x2 > b2n; (* Шаг 7 *)

if abs(fS - fmin) > eps then (* Шаг 8 *)

begin (* Шаг 9 *)

fS := fmin;

a1n := max(x1min-dx1,a1n); b1n := min(x1min+dx1,b1n);

a2n := max(x2min-dx2,a2n); b2n := min(x2min+dx2,b2n);

end

else t := true; (* Шаг 10 *)

until t;

writeln('Числоиспытаний N = ', N);

writeln('fmin = ', fmin : 6 : 3);

writeln('x1min = ', x1min : 6 : 3);

writeln('x2min = ', x2min : 6 : 3);

writeln;

writeln('Алгоритм поиска глобального минимума функции '+

'методом случайного поиска');

writeln;

fmin := large;

x1min := fmin; x2min := fmin;

d1 := b1 - a1; d2 := b2 - a2;

Rho := dV/(d1 * d2);

N := ceil(ln(1 - P)/ln(1 - Rho));

writeln('Число испытаний N = ', N);

for i := 1 to N do (* Шаги 1, 2 *)

begin

x1 := a1 + random * d1; (* Шаги 3, 4 *)

x2 := a2 + random * d2;

fT := f(x1, x2); (* Шаг 5 *)

if fT < fmin then (* Шаг 6 *)

begin

fmin := fT;

x1min := x1;

x2min := x2

end;

end; (* Шаг 7 *)

writeln('fmin = ', fmin : 6 : 3);

writeln('x1min = ', x1min : 6 : 3);

writeln('x2min = ', x2min : 6 : 3);

end.

Б. Результаты работы программы

Поиск глобального многомерного минимума функции

(для курсового проекта по прикладной математике)

Автор: Ткаченко К.С. М-21д

Введите интервал изменения x1

Введите a1 : -5

Введите b1 : 5

Введите интервал изменения x2

Введите a2 : -5

Введите b2 : 5

Введите погрешность eps : 0.0001

Введите вероятность поиска P : 0.95

Введите коэффициент alpha : 20

Введите коэффициент dV : 1

Алгоритм поиска глобального минимума по координатной сетке с равномерным шагом

Число испытаний N = 905

fmin = -2.500

x1min = -0.500

x2min = 2.000

Алгоритм поиска глобального минимума функции методом случайного поиска

Число испытаний N = 299

fmin = -2.469

x1min = -0.677

x2min = 2.173


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно