Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Отделение корней. Графический и аналитический методы отделения корней

Тип Реферат
Предмет Информатика
Просмотров
1539
Размер файла
122 б
Поделиться

Ознакомительный фрагмент работы:

Отделение корней. Графический и аналитический методы отделения корней

Министерство образования и науки РФ

Государственное образовательное учреждение

высшего профессионального образования

Владимирский государственный университет

Кафедра автоматизации технологических процессов

Реферат

по предмету: Моделирование систем

на тему: ”Отделение корней. Графический и аналитический методыотделения корней

Группа ЗАУ91-107

Руководитель

Кирилина А.Н.

Разработал студент

Ерёмин Е.С.

г. Владимир

2010 г.


Содержание

1. Отделение корней............................................................................ 3

2. Графический метод.......................................................................... 4

3. Аналитический метод (табличный или шаговый).......................... 5

4. Метод половинного деления (Дихотомии)...................................... 9

1. Отделение корней

В общем случае отделение корней уравнения f(x)=0 базируется на

известной теореме, утверждающей, что если непрерывная функция f(x) на

концах отрезка [a,b] имеет значения разных знаков, т.е. f(a)×f(b)< 0 , то в указанном промежутке содержится хотя бы один корень. Например, для уравнения f(x)=x3-6x+2=0 видим, что при при что уже свидетельствует о наличии хотя бы одного корня.

Для уравнения видим, что Обнаружив, что устанавливаем факт наличия единственного корня, и остается лишь найти его (как говорится, за немногим стало дело).

Если предварительный анализ функции затруднителен, можно “пойти в лобовую атаку”. При уверенности в том, что все корни различны, выбираем некоторый диапазон возможного существования корней (никаких универсальных рецептов!) и производим “прогулку” по этому интервалу с некоторым шагом, вычисляя значения f(x) и фиксируя перемены знаков. При выборе шага приходится брать его по возможности большим для минимизации объема вычислений, но достаточно малым, чтобы не пропустить перемену знаков.

2. Графический метод

Этот метод основан на построении графика функции y=f(x). Если построить график данной функции, то искомым отрезком [a,b], содержащим корень уравнения (1), будет отрезок оси абсцисс, содержащий точку пересечения графика с этой осью. Иногда выгоднее функцию f(x) представить в виде разности двух более простых функций, т.е. и строить графики функций и . Абсцисса точки пересечения этих графиков и будет являться корнем уравнения (1), а отрезок на оси абсцисс которому принадлежит данный корень, будет являться интервалом изоляции. Этот метод отделения корней хорошо работает только в том случае, если исходное уравнение не имеет близких корней. Данный метод дает тем точнее результат, чем мельче берется сетка по оси Ох.

Пример. Графически решить уравнение .

Решение. Запишем исходное уравнение в виде: , т.е. и .

Таким образом, корни данного уравнения могут быть найдены как абсциссы точек пересечения кривых и .

Теперь построим графики функций и определим интервал изоляции корня.

Рис. 1.

Из рис.1 видно, что корень находится на отрезке [1,2]. В качестве приближенного значения этого корня можно взять значение х=1.5. Если взять шаг по оси Ох меньше, то и значение корня можно получить более точное.

3. Аналитический метод (табличный или шаговый).

Для отделения корней полезно помнить следующие известные теоремы:

1) если непрерывная функция f(x) принимает значения разных знаков на концах отрезка [a,b], т.е. f(a)f(b)<0, то внутри этого отрезка содержится, по крайне мере, один корень уравнения f(x)=0;

2) если непрерывная и монотонная функция f(x) на отрезке [a,b] принимает на концах отрезка значения разных знаков, то внутри данного отрезка содержится единственный корень;

3) если функция f(x) непрерывна на отрезка [a,b] и принимает на концах отрезка значения разных знаков, а производная ее сохраняет постоянный знак внутри отрезка, то внутри отрезка существует корень уравнения (1) и притом единственный.

Если исходное уравнение имеет близкие корни или функция f(x) сложная, то для отделения отрезков изоляции можно воспользоваться методом деления отрезка на части (шаговым методом).

Сначала определяют знаки функции в граничных точках области. Затем отрезок разбивается с помощью промежуточных точек x=a1,a2,…. Если окажется, что в двух соседних точках ak и ak+1 функция f(x) имеет разные знаки, то в силу приведенной теоремы, можно утверждать, то на этом отрезке имеется по крайне мере один корень.

Теперь необходимо убедиться, что на выбранном отрезке находится единственный корень. Для этого можно проверить меняет ли знак производная функции f(x) на этом интервале.

Пример. Найти интервалы изоляции корня уравнения на [0,4]

Решение. Построим таблицу значений, где :

xy(x)
0-2
1-1
22
37
414

Из таблицы значений видно, что функция y(x) меняет знак на отрезке [1,2], поэтому корень находится на этом отрезке.

1.1.1 Отделение корней алгебраических уравнений

Для отделения корней алгебраического уравнения (2) с действительными коэффициентами полезно помнить следующие известные теоремы алгебры:

1) если , , то все корни уравнения (2) расположены в кольце

, (3)

2) если а максимум модулей отрицательных коэффициентов уравнения, и первый отрицательный коэффициент последовательности есть , то все положительные корни уравнения меньше (если отрицательных коэффициентов нет, то нет и положительных корней).

3) если и при имеют место неравенства , , ¼, , то число с служит верхней границей положительных корней уравнения (2).

4) Пусть заданы многочлены

,

,

,

и N0, N1, N2, N3 верхние границы положительных корней соответственно многочленов f(x), , , . Тогда все положительные корни уравнения (2) лежат на отрезке , а все отрицательные корни на отрезке .

Пример. Отделить корни данного алгебраического уравнения, используя теорему 4: .

Решение. ,,

, ,

, ,

, .

Таким образом корни уравнения могут лежать на интервалах , .

Для определения количества действительных корней уравнения (2) необходимо воспользоваться теоремой Декарта: число положительных корней уравнения (2) с учетом их кратности равно числу перемен знаков в последовательности коэффициентов (при этом равные нулю коэффициенты не учитываются) или меньше этого числа на четное число.

Теорема Декарта не требует больших вычислений, но не всегда дает точное количество действительных корней уравнения (2).

Замечание. Для определения количества отрицательных корней достаточно применить теорему Декарта к многочлену .

Если уравнение (2) не имеет кратных корней на [a,b], то точное число действительных корней дает теорема Штурма.

Предположим, что уравнение (2)не имеет кратных корней. Обозначим через производную ; через остаток от деления на , взятый с обратным знаком; через остаток от деления на , взятый с обратным знаком и т.д., до тех пор пока не придем к постоянной. Полученную последовательность

, , , …, (4)

назовем рядом Штурма.

Теорема Штурма: Число действительных корней уравнения f(x)=0, расположенных на отрезке [a,b], равно разности между числом перемен знаков в последовательности (4) при х=a и числом перемен знаков в последовательности (4) при х=b.

Замечание. Использование теоремы Штурма на практике, связано с большой вычислительной работой при построении рядя Штурма.

Пример. Отделить корни данного алгебраического уравнения, используя теорему Штурма:

Решение. ,

,

,

Построим таблицу для подсчета смены знаков:

-1-0.40.51¥
--++++
++++++
-----+
------
Число перемен знаков221111

Из таблицы подсчета смены знаков видно, что есть один корень данного уравнения, и он находится на [-1;-0.4].

4. Метод половинного деления (Дихотомии)

Пусть дано уравнение (1), где функция f(x) непрерывна на отрезке [a,b] и f(a)f(b)<0. Для нахождения корня этого уравнения, принадлежащего данному отрезку [a,b], делим его пополам. Если значение , то - корень уравнения. Если , то выбираем тот, из полученных отрезков или на концах которого функция f(x) имеет противоположные знаки. Новый отрезок полученный указанным способом снова делим пополам и процесс снова повторяем.

Продолжая этот процесс, получим либо точное значение корня уравнения или бесконечную последовательность вложенных друг в друга отрезков , , …, , … таких, что , причем .

Замечание. Метод половинного деления практически удобно применять для грубого нахождения корня данного уравнения, т.к. при увеличении точности существенно возрастает объем вычислительной работы.

Пример. Уточнить корень уравнения , лежащий на отрезке [0,1].

Решение. .

1 этап: а=0, ,

b=1, ,

f(0)f(1)=-1<0

,

f(0)f(0.5)>0, значит корня на отрезке [0;0.5] нет.

f(0.5)f(1)<0, значит корень находится на [0.5;1].

2 этап: a=0.5, f(0.5)=-1.19

b=1, f(1)=1

,

f(0.5)f(0.75)>0, значит корня на отрезке [0.5;0.75] нет.

f(0.75)f(1)<0, значит корень находится на [0.5;1].

Дальше процесс продолжается аналогичным образом.

Список используемой литературы

1. Пирумов У. Г.. Численные методы : учебное пособие для вузов по направлению "Прикладная математика" / У. Г. Пирумов .— 3-е изд., испр. — Москва : Дрофа, 2004 .— 221 с. : ил., табл. — (Высшее образование) .— Библиогр.: с. 216 .— Имен. указ.: с. 217 .— ISBN 5-7107-8777-9.

2. Киреев В. И.. Численные методы в примерах и задачах : учебное пособие для технических вузов / В. И. Киреев, А. В. Пантелеев .— Изд. 2-е, стер .— Москва : Высшая школа, 2006 .— 480 c. : ил., табл .— (Прикладная математика для втузов) .— Библиогр.: с. 477-480 .— ISBN 5-06-004763-6.

3. Катаева Л.Ю. Методическая разработка по курсу "Вычислительная математика" /РГОТУПС МПС РФ; Н. Новгород, 2003 г.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно