Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Теория пары снимков

Тип Реферат
Предмет Геология
Просмотров
549
Размер файла
89 б
Поделиться

Ознакомительный фрагмент работы:

Теория пары снимков

1. Формулы связи координат точек местности и их изображений на тереопаре снимков (прямая фотограмметрическая засечка)

На рис.1 показана стереопара снимков Р1 и Р2, на которых точка местности М изобразилась соответственно в точках m1 и m2. Будем считать, что элементы внутреннего и внешнего ориентирования снимков известны.


Рис.1 .

Выведем формулы связи координат точек местности и координат их изображений на стереопаре снимков.

Из рис.1 следует, что векторы определяют соответственно положение точки местности М и центра проекции S1 снимка Р1 относительно начала системы координат объекта OXYZ. Вектор определяет положение центра проекции S2 снимка Р2 относительно центра проекции S1.

Векторы определяют положение точек m1 и М относительно центра проекции S1. Векторы определяют положение точек m2 и М относительно центра проекции S2.

Из рис.1 следует, что

(1 )

Так как векторы коллинеарны, то

; ( 2)

где N – скаляр.

С учетом ( 2) выражение (1.8.1) будет иметь вид

. ( 3)

В координатной форме выражение (1.7.3) будет иметь вид

; ( 4)

где X1’,Y1’,Z1’ –координаты вектора в системе координат объекта OXYZ.

.

Найдем значение N, входящее в выражение ( 4). Из рис.1 следует, что

;

или с учетом (2)

. ( 5)

Так как векторы коллинеарны, то их векторное произведение

. ( 6)

С учетом (5) выражение ( 6) можно представить в виде

;

Или

. ( 7)

В координатной форме выражение (7) имеет вид

или

, ( 8),

где:

- орты, совпадающие с осями координат X,Y,Z системы координат объекта OXYZ;

BX, BY, BZ, X1’, Y1’, Z1’, X1’, Y1’, Z1’ – координаты векторов в системе координат объекта OXYZ.

,

где i – номер снимка, а

. (9)

Так как векторы коллинеарны ( так как векторы компланарны), значение N можно найти как отношение их модулей, то есть

; (10)

В координатной форме выражение (10) с учетом (8) имеет вид

; (11)

У коллинеарных векторов отношение их координат равно отношению их модулей, поэтому можно записать, что:

Таким образом, если известны элементы внутреннего и внешнего ориентирования стереопары снимков и измерены на этих снимках координаты соответственных точек x1,y1 и x2,y2, то сначала надо определить по одной из формул ( 12)-( 14) значение скаляра N, а затем по формуле ( 4) вычислить координаты точки местности X,Y,Z.

2.Формулы связи координат точек местности и координат их изображений на стереопаре снимков идеального случая съемки

В идеальном случае съемки угловые элементы ориентирования снимков стереопары w1=a11=w2=a22=0, а базис фотографирования параллелен оси Х системы координат объекта OXYZ.

В этом случае координаты базиса будут равны BX=B, BY=BZ=O (B-модуль ).

Примем, что , то есть начало системы координат объекта OXYZ совмещено с точкой S1), f1=f2=f, ax0i=y0i=0.

Так как угловые элементы ориентирования снимков равны нулю, то

,

а ,


где i – номер снимка.

При этом выражение (1 .13) примет вид

, (1)

а выражение (1 .4), которое мы представим в виде

будет иметь вид

, (2)

а с учетом ( 1)

. (3)

Так как из третьего уравнения выражения (3) следует, что

,


то формулы связи координат (3) можно представить в виде

(4)

3.Определение координат точек местности по стереопаре снимков методом двойной обратной фотограмметрической засечки

Для определения координат точек местности по стереопаре снимков методом прямой фотограмметрической засечки необходимо, чтобы были известны элементы внешнего ориентирования снимков. В большинстве случаев практики их значения не известны. В этом случае определение координат точек местности по стереопаре снимков выполняют методом двойной обратной фотограмметрической засечки.

Решение задачи по этому методу выполняется в следующей последовательности:

1. Определяют элементы взаимного ориентирования снимков. Пять элементов взаимного ориентирования снимков определяют взаимную угловую ориентацию стереопары снимков и базиса фотографирования. Для их определения необходимо измерить не менее пяти соответственных точек на стереопаре снимков;

2. Строят фотограмметрическую модель объекта по измеренным на стереопаре снимков координатам изображений соответственных точек и значениям элементов взаимного ориентирования снимков. Построенная модель подобна сфотографированному объекту, но имеет произвольный масштаб и произвольно расположена и ориентирована относительно системы координат объекта;

3. Определяют элементы внешнего ориентирования фотограмметрической модели по опорным точкам. Эти семь элементов определяют масштаб модели, ее положение и ориентацию относительно системы координат объекта. Для их определения достаточно трех опорных точек, не лежащих на одной прямой. По значениям элементов внешнего ориентирования фотограмметрической модели и элементов взаимного ориентирования можно определить элементы внешнего ориентирования стереопары снимков;

4. По координатам точек, определенных в системе координат модели, и элементам внешнего ориентирования модели определяют координаты точек в системе координат объекта.

4. Условие, уравнения и элементы взаимного ориентирования снимков

На рис. 1 представлена стереопара снимков Р1 и Р2 в положении, которое они занимали в момент фотографирования.

Любая пара соответственных лучей в этом случае пересекается в точке М местности и лежит в плоскости, проходящей через базис фотографирования (базисной плоскости).

Очевидно, что в этом случае векторы , лежащие в базисной плоскости, компланарны.



Рис. 1

Как известно из аналитической геометрии, смешанное произведение компланарных векторов равно нулю.

. ( .1)

Условие компланарности в координатной форме имеет вид:

. ( 2)

В уравнении ( 2) координаты векторов в системе координат фотограмметрической модели ОМХМYMZM, в общем случае произвольно расположенной и ориентированной.

В дальнейшем эту систему координат будем называть просто системой координат модели.

Условие ( 2) связывает между собой только направления векторов и выполняется при любых значениях их модулей. Поэтому значение модуля вектора можно выбрать произвольно. Направление вектора определяется двумя независимыми величинами. В качестве этих величин можно выбрать координаты bz и bу вектора , коллинеарного вектору , задав величину координаты bx произвольно.

В частном случае величину bx можно выбрать равной 1.

При этом направление вектора будут определять величины:

и .

Выражение (2) в этом случае будет иметь вид:

( 3)

В уравнении (3)

,

где i – номер снимка, а А’1 – ортогональная матрица, элементы aij которой являются функциями угловых элементов ориентирования i-го снимка wi’,ai’,Ài’ относительно системы координат модели ОМХМYMZM.

В выражении (3), которое является уравнением взаимного ориентирования в общем виде, куда кроме координат соответственных точек, измеренных на стереопаре снимков, и элементов внутреннего ориентирования входят 8 параметров by, bz, w1’, a1’, À1’, w2’, a2’, À2’, которые определяют угловую ориентацию базиса фотографирования и стереопары снимков относительно системы координат модели ОМХМYMZM.

Причем параметры w1’ и w2’ определяют поворот снимков стерепары вокруг оси ХМ, параметры bz, a1’, a2‘ – поворот базиса фотографирования и стереопары снимков вокруг оси YM, а параметры by, À1’, À2 ‘– поворот базиса фотографирования и стереопары снимков вокруг оси ZM.

Однако, из этих 8 параметров только 5 определяют взаимную угловую ориентацию базиса фотографирования и стереопары снимков.

Условие (3) выполняется при любой ориентации системы координат модели ОМХМYMZM. Следовательно, ее можно ориентировать таким образом, чтобы 3 из 8 параметров стали равны нулю.

Очевидно, что в общем случае можно сделать равным нулю только один из параметров, входящих в три группы параметров:

– w1’, w2’;

– bz, a1’, a2‘;

– by, À1’, À2’.

Таким образом, в качестве элементов взаимного ориентирования можно выбрать любую комбинацию из восьми параметров by, bz, w1’, a1’, À1’, w2’, a2’, À2’, кроме комбинаций, в которые одновременно входят две тройки параметров bz, a1’, a2‘ и by, À1’, À2’, а также пара параметров w1’ и w2’.

Рассмотрим наиболее распространенные системы элементов взаимного ориентирования:

Система a1’, À1’, w2’, a2’, À2. Если принять при этом, что by=bz= w1’=0, то уравнение (3) имеет вид:

. ( 4)

Система by, bz, w2’, a2’, À2’. Если при этом принять, что w1’= a1’= À1’=0, то уравнение (3) будет иметь вид:

; ( 5)

так как .

Комментарий. 3 оставшихся из 8 параметров после выбора 5 элементов взаимного ориентирования задают ориентацию системы координат модели ОМХМYMZM. Например, выбрав систему элементов взаимного ориентирования by, bz, w2’, a2’, À2’ и приняв, что w1’= a1’= À1’ =0, мы таким образом задаем систему координат модели ОМХМYMZM, которой параллельны осям x, y, z системы координат первого снимка стереопары S1x1y1z1. В общем случае значения трех параметров можно задавать произвольно.

5. Определение элементов взаимного ориентирования

Для определения элементов взаимного ориентирования в качестве исходного используют уравнения взаимного ориентирования ( 4.3)

.

Каждая точка, измеренная на стереопаре снимков, позволяет составить одно уравнение (4.3), в которое, помимо измеренных координат точек на стереопаре снимков, элементов внутреннего ориентирования и трех параметров, задающих ориентацию системы координат модели, входят 5 неизвестных элементов взаимного ориентирования.

Очевидно, что для определения элементов взаимного ориентирования необходимо измерить на стереопаре снимков не менее 5 точек.

В качестве примера рассмотрим определение элементов взаимного ориентирования by, bz, w2’, a2’, À2’.

В связи с тем, что уравнения ( 4.3) не линейны, их предварительно приводят к линейному виду и переходят к уравнению поправок:

. ( 1)

В уравнении поправок коэффициенты ai частные производные от функции ( 4.3) по соответствующим аргументам, а ℓ– свободный член.

Значения коэффициентов аi в уравнении ( 1) вычисляют по следующим известным значениям:

– измеренным координатам точек на стереопаре снимков – хi, yi;

– элементам внутреннего ориентирования снимков fi, x0i, y0i;

– 3 параметрам, задающим ориентацию системы координат модели (в нашем случае w1’, a1’, À1’) и приближенным значениям элементов взаимного ориентирования.

Свободный член ℓ вычисляется по формуле ( 4.3) таким же образом.

Полученную систему уравнений поправок решают методом приближений, а в случае, если измерено более 5 точек по методу наименьших квадратов (под условием VTPV=min). В результате решения находят значения элементов взаимного ориентирования.

Критерием, по которому принимается решение о завершении итерраций, могут являться величины поправок к определяемым неизвестным или величины остаточных поперечных параллаксов, которые для каждой измеренной точки вычисляются по формулам:

; ( 2)

где .

Величина qост представляет собой разность ординат измеренных точек на стереопаре снимков, приведенных к идеальному случаю съемки, то есть q=y1-y2.

Необходимо отметить, что при отсутствии ошибок построения снимка и ошибок измерений величина q должна быть равна 0.

При определении элементов взаимного ориентирования оптимальным вариантом считается измерение 12-18 точек на стереопаре снимков, расположенных парами или тройками в 6 стандартных зонах (рис. 1).


Рис. 1

- главная точка снимка

- стандартно расположенная зона

В этом случае получается наиболее точное и надежное определение элементов взаимного ориентирования и появляется возможность локализации грубых измерений.


6. Построение фотограмметрической модели

Построение фотограмметрической модели заключается в определении координат точек объекта по измеренным на стереопаре снимков координатам их изображений в системе координат модели ОМХМYMZM.

Определение координат точек модели производится по формулам прямой фотограмметрической засечки (см. раздел 1).

При этом координаты центра проекции S принимаются произвольными (обычно 0). Также произвольно (но не равной 0) выбирается величина ВХ. В большинстве случаев практики величину ВХ принимают равной:

;

где b – базис фотографирования в масштабе снимка,

m – знаменатель масштаба снимка.

Остальные значения элементов внешнего ориентирования определяют по 8 параметрам by, bz, w1’, a1’, À1’, w2’, a2’, À2’, 5 из которых являются элементами взаимного ориентирования, а 3 определяют ориентацию системы координат модели.

При этом

.

Например, если были определены элементы взаимного ориентирования a1’, À1’, w2’, a2’, À2’ и при этом величины параметров by, bz, w1’ были приняты равными нулю (by=bz=w1’=0), то BY=BZ=0, w1=0, a1=a1’, À11’, w2=w2’, a2=a2’, À22’.

Если были определены элементы взаимного ориентирования by, bz, w2’, a2’, À2’, а величины параметров w1’, a1’, À1’ были приняты равными нулю (w1’= a1’= À1’=0), то

.

7. Внешнее ориентирование модели. Элементы внешнего ориентирования модели


Рис. 1

На рис.1: OXYZ- система координат объекта, ОМХМYMZM- система координат фотограмметрической модели , А – точка объекта ,АМ -точка фотограмметрической модели, соответствующая точке А объекта .

Векторы определяют положение начала системы координат модели ОМХМYMZM и точки А местности относительно начала системы координат объекта OXYZ.

Векторы определяют соответственно положение точек АМ и А относительно системы координат фотограмметрической модели.

Из рис. 1 следует, что

. ( 1)

Векторы коллинеарны, поэтому

; ( 2)

где t – знаменатель масштаба модели.

С учетом ( 2) выражение ( 1) имеет вид:

; ( .3)

В координатной форме выражение ( 3) имеет вид:

; ( 4)

Или

. ( .5)

В выражениях ( 4) и ( 5):

X, Y, Z – координаты точки объекта в системе координат объекта;

ХМ,YM,ZM- координаты соответствующей точки модели в системе координат фотограмметрической модели;

АМ – матрица преобразования координат, элементы aij которой являются функциями углов wМ, aМ, ÀМ, определяющих ориентацию системы координат модели относительно системы координат объекта;

t – знаменатель масштаба модели.

7 параметров: - называют элементами внешнего ориентирования модели.

8. Определение элементов внешнего ориентирования модели по опорным точкам

Для определения элементов внешнего ориентирования модели по опорным точкам в качестве исходных используют уравнения ( 7.5), которые представим в виде:

. ( 1)

Каждая планово-высотная опорная точка (X,Y,Z) позволяет составить 3 уравнения ( 1), в которых неизвестными являются 7 элементов внешнего ориентирования модели. Каждая плановая опорная точка (X,Y) позволяет составить два первых уравнения из выражения ( 1), а каждая высотная опорная точка (Z) – третье уравнение из выражения ( 1).

Для определения элементов внешнего ориентирования модели необходимо составить систему не менее чем из 7 уравнений. Очевидно, что для этого необходимо иметь не менее двух планово-высотных и одной высотной опорной точки. Задачу можно также решить, если иметь две плановые и три высотные опорные точки.

Так как уравнения ( 1) не линейны, их приводят к линейному виду и переходят к уравнениям поправок.

. ( 2)

В уравнении поправок:

ai, bi, ci – частные производные от уравнений ( 1) по соответствующим переменным ;

X, ℓY, ℓZ– свободные члены.

Значения коэффициентов уравнений поправок ai, bi, ci вычисляют по известным значениям координат ХМ,YM,ZM и X, Y, Z и приближенным значениям неизвестных. Значения свободных членов ℓX, ℓY, ℓZвычисляют таким же образом по формулам ( .1).

Полученную таким образом систему уравнений поправок решают методом последовательных приближений. Если количество уравнений поправок в системе больше семи, то ее решают по методу наименьших квадратов (под условием VTPV=min).

9. Определение элементов внешнего ориентирования снимков стереопары

По элементам внешнего ориентирования модели и элементам взаимного ориентирования можно определить элементы внешнего ориентирования снимков стереопары.

Линейные элементы внешнего ориентирования снимков определяют по формулам:

; ( 1)

в которых - координаты центра проекции i-го снимка стереопары в системе координат модели.

Угловые элементы внешнего ориентирования снимков wi, ai, Ài определяют в следующей последовательности:

1. Сначала получают матрицу преобразования координат i-го снимка

; ( 2)

АМ – матрица, в которой элементы aij вычисляют по угловым элементам внешнего ориентирования модели wМ, aМ, ÀМ ;

Ai’ – матрица, в которой элементы aij вычисляют по угловым элементам взаимного ориентирования i-го снимка wi’, ai’, Ài’.

2. Затем по элементам aij матрицы Ai вычисляют угловые элементы внешнего ориентирования i-го снимка стереопары:

.

10. Точность определения координат точек объекта по стереопаре снимков

Для предрасчета точности определения координат точек местности по стереопаре аэрофотоснимков, учитывая, что углы наклона снимков не превышают 1°- 3°, а базис фотографирования практически горизонтален, воспользуемся формулами связи координат точек местности и координат их изображений на стереопаре снимков идеального случая съемки ( 2.4):

. ( 2.4)

Сначала получим среднюю квадратическую ошибку определения высоты точки Z местности. Для этого продифференцируем третью формулу выражения (1.8.4) по аргументу р.

.


Заменим величину р на b – базис в масштабе снимка.

Рис.1

На рис.1 О1и О2 – главные точки снимка.

В результате получим

.

Перейдя к средним квадратическим ошибкам получим формулу:

. ( 1)

Для получения средних квадратических ошибок определения координат Х и Y точки местности продифференцируем первые две формулы выражения (1.8.4) по аргументам x, y, Z и перейдем к средним квадратическим ошибкам.

В результате получим

. ( 2)

В качестве примера вычислим величины mX, mY и mZ точек местности, определенных по стереопаре снимков масштаба 1:5000, полученной АФА с f =150 мм и форматом кадра 23х23 см, с продольным перекрытием 60%.

Будем считать, что на стереопаре снимков точки были измерены с ошибками

.

В этом случае высота фотографирования

;

а базис фотографирования в масштабе снимка

.


Средние квадратические ошибки определения координат точки местности, вычисленные по формулам ( 1) и ( 2) будут равны:

.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно