Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Знаходження похідної функції

Тип Реферат
Предмет Педагогика
Просмотров
2263
Размер файла
791 б
Поделиться

Ознакомительный фрагмент работы:

Знаходження похідної функції

ТЕМА УРОКУ: Похідні елементарних функцій

МЕТА УРОКУ: формування знань учнів про похідну сталої функції, степеневої функції з цілим показником, тригонометричних функцій.

І Перевірка домашнього завдання

1. Три учні відтворюють розв’язування вправ № 1 (1,2), 2.

1) ==

2)

Рівняння шуканої дотичної у – у0 =. Оскільки х0 = 1, у = х2, то і

Отже, у – 1 = 2 (х -1) або у = 2х – 1.

2. Фронтальна бесіда за запитаннями №№ 11 – 17 із Запитання і завдання до розділу VII.

II. Сприймання і усвідомлення знань про похідну сталої функції, степеневої функції з цілим показником

На попередньому уроці ми довели, що похідна лінійної функції у = дорівнює , тобто .

Якщо покласти , де С – довільна постійна, то одержимо, що тобто похідна постійної функції дорівнює 0.

Якщо у формулі покласти, то одержимо

Нам уже відомо, що . А як знайти похідну функції у = х5, у = х20 тощо? Розглянемо функцію у= хn, де n – .

Знайдемо похідну цієї функції, для цього зафіксуємо значення аргумента х0 і надамо йому приросту , тоді:

1)

2)

(Скориставшись формулою

3)

Звідси

Розглянемо функцію у = хn-1, де .

Знайдемо похідну цієї функції, для цього зафіксуємо значення аргумента х0 і надамо йому приросту , тоді

1)

2)

3) =

Отже, , де .

Таким чином виконується рівність: .

Виконання вправ

1. Знайдіть похідну функції:

а) у = х6; б) у = х8; в) у = х2; г) .

Відповідь: а) 6х5; б) 8х7; в) 7х6; г) 6х5.

2. Знайдіть похідні функцій:

а) у = х-10; б) у = х2; в) ; г).

Відповідь: а) -10х-11; б) -3х-4; в) -6х-7; г) -6х-7.

ІІІ. Сприймання і усвідомлення знань про похідну тригонометричних функцій

Знайдемо похідну функції у=. Зафіксуємо х0 і надамо аргументу приросту , тоді:

1)

2)

3)

.

Отже

Аналогічно можна довести, що

Знайдемо похідну функції .

Зафіксуємо х0 і надамо аргументу приросту , тоді:

.

.

Отже,

Аналогічно можна довести, що

Виконання вправ № 1 (3), 5 із підручника.

VI. Підведення підсумків уроку

Провести підведення підсумків уроку з використанням таблиці 4 похідних.

Таблиця

Таблиця похідних


V. Домашнє завдання

Розділ VІІ § 3. запитання і завдання для повторення розділу VІІ № 19 – 22. вправа №4 (2, 4).


ТЕМА УРОКУ: Теореми про похідну суми, добутку і частки функцій

МЕТА УРОКУ: Вивчення теореми про похідні суми, добутку і частки функцій, формування умінь учнів у знаходження похідних.

І. Перевірка домашнього завдання

1. Усне розв’язування вправ.

1) Знайдіть похідні функцій

а) у – х10; б) ; в) ; г) .

Відповідь: а) 10х9; б) -9х-10; в) -4х-5;ё г) 3х2.

2) Знайдіть похідні функцій:

а) в точці ; б) в точці ;

в) в точці ; г) в точці .

Відповідь: а) 0; б) ; в) 4; г) -1.

2. Відповісти на запитання, що виникли у учнів під час виконання домашніх вправ.

ІІ. Сприймання і усвідомлення теореми про похідну суми функції

Теорема: Якщо функції f(x) і g(x) диференційовані в точці х, то їхня сума диференційована в цій точці і

або коротко говорять: похідна суми дорівнює сумі похідних.

Доведення

Розглянемо функцію у = f(x) + g(x).

Зафіксуємо х0 і надамо аргументу приросту . Тоді

,

.

Отже, .

Наслідки

а) Похідна різниці дорівнює різниці похідних.

Нехай у(х) = f(x) - g(x), тоді f(x) = у(х) + g(x) і , звідси.

б) Похідна суми декількох функцій дорівнює сумі похідних цих фукцій, тобто

.

Приклад. Знайдіть похідну функцій

а) ;

б) ;

в) .

Розв’язання а) ;

б) .

в).

Відповідь: а) ; б) в) =.

Виконання вправ

1. Знайдіть похідні функцій:

а) у = х3 + х – х4; б) ;

в) ; г) .

Відповідь: а); б); в) ;

г) .

2. Знайдіть значення похідної функції f(x) в точці х0:

а) ;

б) ;

в) .

Відповідь: а) 1; б) ; в)-1.

3. При яких значеннях х значення похідної функції f(x) дорівнює 0:

а); б) ; в) .

Відповідь: а) ; б) ; в) .

ІІІ. Сприймання і усвідомлення теореми про похідну добутку

Теорема. Якщо функції f(x) і g(x) диференційовані в точці х, то їхній добуток також – диференційована функція в цій точці і , або коротко говорять: похідна добутку двох функцій дорівнює сумі добутків кожної функції на похідну другої функції

Доведення. Розглянемо функцію . Зафіксуємо х0 і надамо аргументу приросту , тоді

1)

Оскільки , , то

.

2)

.

Отже, .

Наслідки

а) Постійний множник можна винести за знак похідної: .

Дійсно,.

б) Похідна добутку декількох множників дорівнює сумі добутків похідної кожного із них на всі останні, наприклад:

.

Приклад. Знайдіть похідні функцій:

а) ;

б) ;

в) .

Розв’язування

а) ;

б)

;

в)

.

Виконання вправ.

1. Знайдіть похідну функцій:

а) ; б) ;

в) ; г) .

Відповідь: а) 6х-5; б) ;

в) ; г) .

2. Знайдіть похідні функцій:

а) ; б) ;

в) ; г) .

Відповідь: а) ; б) ;

в) ; г) .

3. Знайдіть похідні функцій:

а) ; б) .

Відповідь: а) ; б) .

IV. Сприймання і усвідомлення теореми про похідну частки функцій

Теорема. Якщо функції f(x) і g(x) диференційовані в точці х і g(x), то функція диференційована в цій точці і .

Доведення

Формулу похідної частки можна вивести, скориставшись означенням похідної. Проте це зробити можна простіше.

Нехай , тоді f(x)=у(х). Знайдемо похідну функції f(x), скориставшись теоремою про похідну добутку, . Виразимо з цієї формули

і підставимо замість у(х) значення , тоді будемо мати:

.

Отже, .

Приклад: Знайдіть похідні функцій

а) ; б) .

Розв’язання

а) .

б) .

Виконання вправ

1. Знайдіть похідні функцій:

а) ; б) ; в) ; г) .

Відповідь: а) ; б) ;

в) ; г) .

2. Знайдіть похідні функцій:

а) ; б) ; в) ; г)

Відповідь: а) ; б) ;

в) ; г) .

V. Домашнє завдання

Розділ VII § 4. Запитання і завдання для повторення розділу VII № 23 – 27. вправа № 10 (1 -5, 7 - 8).


ТЕМА УРОКУ: Похідна складеної функції

Мета уроку: Формування поняття про похідну складеної функції, знань учнів про похідну складеної функції, умінь знаходити похідну складеної функції.

І. Перевірка домашнього завдання

1) ;

2)

;

3) ;

4) ;

5) ;

6) .

2. Самостійна робота.

Варіант 1.

1. Знайдіть значення похідної функції f(x) при заданому значенні аргументу х0:

а) , х0=-1. (2 бали)

б) . (2 бали)

2. Знайдіть похідну функцій:

а) . (2 бали)

б) . (2 бали)

в) . 42 бали)

Варіант 2.

1. Знайдіть значення похідної функції f(x) при заданому значенні аргумента х0:

а) , х0=-1. (2 бали)

б) . (2 бали)

2. Знайдіть похідну функцій:

а) . (2 бали)

б) . (2 бали)

в) . 42 бали)

Відповідь: В-1. 1. а) ; б) -1

2. а) ; б) ; в)

В-2. 1. а) ; б) 1

2. а) ; б) ; в) .

ІІ. Сприймання і усвідомлення поняття складеної функції та її похідної

Розглянемо приклад.

Приклад 1. Нехай треба обчислити по заданому значенню х значення функції у, яка задана формулою .

Для цього спочатку треба обчислити за даним значенням х значення u=, а потім за значенням u обчислити у=.

Отже, функція g ставить у відповідність числу х число u, а функція f – числу u число у. Говорять, що у є складеною функцією із функції g і f, і пишуть .

Функцію g(х) називають внутрішньою функцією, або проміжною змінною, функцію f(u) – зовнішньою функцією. Отже, щоб обчислити значення складеної функції в довільній точці х, спочатку обчислюють значення u внутрішньої функції g, а потім f(u).

Приклад 2. Розглянемо функцію . Вона є складною із функцій , де - внутрішня функція, - зовнішня функція.

Приклад 3. Запишіть складні функції і , якщо

Розв’язання

Виконання вправ.

1. Задайте формулою елементарні функції і , із яких побудована складна функція :

а) б)

в) г)

Відповіді: а)

б) ;

в)

г) .

2. Дано функції: . Побудуйте функції:

а) ; в) ; в) ;

г) ; в) ; є) .

Відповідь: а) ; б) ;

в) ; г) ;

д) є)

У складній функції присутня проміжна змінна . Тому при знаходженні похідної складної функції ми будемо вказувати, по якій змінній взято похідну, використовуючи при цьому спеціальні показники:

– похідна функції у по аргументі х;

– похідна функції у по аргументі u;

– похідна функції u по аргументі х;

Теорема. Похідна складеної функції знаходиться за формулою , де , або похідна складеної функції дорівнює похідній зовнішньої функції по проміжній змінній, помноженій на похідну внутрішньої функції по основному аргументу.

Доведення

Будемо вважати, що функція має похідну в точці х0, а функція має похідну в точці u0=, тобто існують границі , і .

Нехай, аргументу х0 надано приросту , тоді змінна u набуде приросту . Поскільки одержала приріст , то функція у одержить також приріст . Приріст зумовив виникнення приросту і .

Подамо . Перейдемо до границі при (при цьому ).

або .

Приклад 1. Знайдіть похідну функції у = (3х3-1)5.

Розв’язання

у = (3х3-1)5 – складена функція , де u =3х3-1, тоді , .

При обчисленні похідної складеної функції явне введення допоміжної букви u для позначення проміжного аргументу не є обов’язковим. Тому похідну даної функції знаходять відразу як добуток похідної степеневої функції u5 на похідну від функції 3х3-1:

.

Приклад 2.Знайдіть похідні функцій:

а) ; б) ;

в) ; г) .

Розв’язання

а) ;

б) ;

в) ;

г) .

Виконання вправ.

1. знайдіть похідні функцій:

а) у = (3х+2)50; б) (6-7х)10;

в) ; г) .

Відповідь: а) ; б) ;

в) ; г) .

2. Знайдіть похідні функцій:

а) ; б) ;

в) ; г) .

Відповідь: а) ; б) ;

в) ; г) .

ІІІ. Підведення підсумків уроку

При підведенні підсумків уроку можна скористатись таблицею.

Таблиця диференціювання

,де

IV. Домашнє завдання

Розділ VII § 4. запитання і завдання для повторення до розділу VII № 23–28. вправа № 10 (6, 10, 14, 22).


ТЕМА УРОКУ: Похідна показникової, логарифмічної та степеневої функцій

Мета уроку: Формування знань учнів про похідну показникової, логарифмічної та степеневої функції(з довільним дійсним показником), умінь учнів в знаходженні похідних функцій.

І. Перевірка домашнього завдання

1.Перевірити правильність виконання домашніх вправ за записами, зробленими на дошці.

6) ;

10) ;

11) ;

22) .

2. Виконання усних вправ.

Знайдіть похідні функцій, які подано в таблиці.

Таблиця

1

2

3

4

1

2

3

=

4


ІІ. Сприймання і усвідомлення матеріалу про похідну показникової функції

Перш ніж знаходити похідну показниковїх функції, зробимо два важливих зауваження. Графік функції у=ах проходить через точку (0; 1). Нехай – величина кута , утвореного дотичною до графіка функції у = ах в точці (0; 1)з додатним напрямом осі абсцис. Величина цього кута залежить від значення основи а. Наприклад, обчислено, що при а = 2 величина кута приблизно дорівнює 340(рис.29), а при а = 2, =470.

у у = ех якщо основа а показникової функції у = ах зростає від 2 до 3, то величина кута зростає і приймає значення від 340 до 470. Отже, існує таке значення , при якому дотична, проведена до графіка функції у = ах в точці (0; 1) утворює з додатним напрямком осі ОХ кут 450 (рис.31). Таке значення прийнято позначати буквою е, е – число ірраціональне, е = 2,718281828459... 0

Таким чином, дотична до графіка функції у = ех в точці (0; 1) утворює з додатним напрямком осі абсцис, який дорівнює 450.

У відповідності з геометричним змістом похідної даний висновок означає, що значення похідної функції в точці х0 дорівнює =1. Отже, .

Знайдемо тепер формулу похідної функції .

Нехай аргумент х0 одержав приріст , тоді:

1)

2)

3) .

Таким чином, похідна функції ех дорівнює самій функції:

Знайдемо похідну функції , скориставшись основною логарифмічною тотожністю та правилом знаходження похідної складеної функції:

.

Отже,

Похідна показникової функції дорівнює добутку цієї функції на натуральний логарифм її основи.

Приклад 1. Знайдіть похідну функцій:

а) у = 5х; б) у = е3-2х; в) ; г) .

Розв’язання

а) ;

б) ;

в) ;

г) .

Виконання вправ.

№ 2 (2, 4, 6, 8, 10, 12), №2 (20, 22, 24, 26, 28, 30) із підручника (розділ Х).

ІІІ. Сприймання і усвідомлення матеріалу про похідну логарифмічної функції

Розглянемо функцію . За основною логарифмічною тотожністю: для всіх додатних х.

Диференціюючи обидві частини цієї рівності, одержимо: , або .

Звідси .

Отже,

Знайдемо похідну функції . Так як , то

.

Отже,

Приклад 1. Знайдіть похідну функцій:

а) ; б) ;

в) ; г) .

а) ;

б) ;

в) ;

г)

=.

Виконання вправ.

№ 2 (14, 16, 18, 32, 34, 36, 38, 40, 42), із підручника (розділ Х).

IV. Сприймання і усвідомлення матеріалу про похідну степеневої функції , де

Ми довели, що для .

Розглянемо функцію , де .

Знайдемо похідну цієї функції:

.

Отже, для всіх .

ТЕМА УРОКУ: Розв’язування вправ

Мета уроку: Формування умінь учнів знаходити похідні функцій.

І. Перевірка домашнього завдання

1 перевірити правильність виконання домашніх вправ шляхом порівняння відповідей.

№ 2. 3) -е; 5) ; 7) ; 9) ; 11)

13) ; 15) ; 17) .

№ 8. 1) 100х99; 3) ; 5) ; 7) -20х19; 9) ;

11) .

2. Усне розв’язування вправ.

Знайдіть похідні функцій, поданих в таблиці.

1

2

3

4

5

1

2

3

4

5

ІІ. Формування умінь знаходити похідні функцій

1) Виконання вправ № 10 (12; 11; 13; 17; 19) розділу VІІ підручника.

2) Виконання вправ № 2 (23; 24; 31; 34; 35; 36) розділу Х підручника.

3) Знайдіть похідну функції та обчисліть її значення, якщо .

.

.

Відповідь: 4.

4) Тіло рухається за законом .

Знайдіть швидкість точки через 2 секунди після початку руху. (Відстань вимірюється в метрах).

Розв’язання

;

.

Відповідь: .

ІІІ. Домашнє завдання

Підготуватися до контрольної роботи. Вправи ; 10 (15; 16; 20; 25) розділу VІІ; № 2 (22; 26; 38; 42), 8 (14; 18) розділу Х.


ТЕМА УРОКУ: Тематична контрольна робота № 1

Мета уроку: Перевірити навчальні досягнення учнів з теми „Границя, неперервність та похідна функцій”.

Варіант 1

1. Знайдіть похідну функції:

а) . (2 бали)

б) . (2 бали)

в) . (2 бали)

г) . (2 бали)

2. Знайдіть похідну функції та обчислити її значення, якщо . (2 бали)

3. Точка рухається за законом . Знайдіть миттєву швидкість точки моменту t=1 с (s вимірюється в метрах). (2бали)

Варіант 2

1. Знайдіть похідну функції:

а) . (2 бали)

б) . (2 бали)

в) . (2 бали)

г) . (2 бали)

2. Знайдіть похідну функції та обчислити її значення, якщо . (2 бали)

3. Точка рухається за законом . Знайдіть миттєву швидкість точки моменту t=1 с (s вимірюється в метрах). (2бали)

Варіант 3

1. Знайдіть похідну функції:

а) . (2 бали)

б) . (2 бали)

в) . (2 бали)

г) . (2 бали)

2. Знайдіть похідну функції та обчислити її значення, якщо . (2 бали)

3. Точка рухається за законом . Знайдіть миттєву швидкість точки моменту t=5 с (s вимірюється в метрах). (2бали)

Варіант 4

1. Знайдіть похідну функції:

а) . (2 бали)

б) . (2 бали)

в) . (2 бали)

г) . (2 бали)

2. Знайдіть похідну функції та обчислити її значення, якщо . (2 бали)

3. обертання тіла навколо осі здійснюється за законом . Знайдіть кутову швидкість точки при t=4 с ( вимірюється в радіанах). (2бали)

Відповідь: В-1. 1. а) ; б) ;

в) ,; г) .

2. , .

3. 10

В-2 1. а) ; б) ;

в) ,; г) .

2. , .

3. 9

В-3. 1. а) ; б) ;

в) ,; г) .

2. , .

3. 35

В-4. 1. а) ; б) ;

в) ,; г) .

2. , .

3. 20


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно