Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Автоматизация участка по обработке зубчатого колеса

Тип Реферат
Предмет Промышленность и производство
Просмотров
701
Размер файла
333 б
Поделиться

Ознакомительный фрагмент работы:

Автоматизация участка по обработке зубчатого колеса

Содержание

ТЕХНИЧЕСКОЕ ЗАДАНИЕ

ЭСКИЗ ДЕТАЛИ

Введение

I. Разработка планировки

1.1 Расчет режимов резания

1.2Нормирование операций технологического процесса

1.3Выбор оборудования

1.3.1 Выбор основного технологического оборудования

1.3.2 Выбор вспомогательного оборудования

1.4Разработка ГПС – планировка РТУ

II. Выбор датчиков и разработка циклограммы работы ГПС – РТу

III.Разработка технологических наладок для станков с ЧПУ

IV. Разработка отсекателя заготовок

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

ПРИЛОЖЕНИЯ


ЭСКИЗ ДЕТАЛИ


Введение

На сегодняшний день в машиностроении сложилась тенденция к применению прогрессивных технологий. Это, прежде всего, выражается в использовании в производстве автоматизированного и автоматического оборудования: ГПМ, ГАУ, ГАЛ, ГПС, РТК, РТУ, РТЛ и АТТС.

Гибкая производственная система (ГПС) – это совокупность или отдельная единица технологического оборудования и системы обеспечения его функционирования в автоматическом режиме, обладающая свойствами автоматической переналадки при производстве изделий произвольной номенклатуры в установленных пределах значений их характеристик.

По организационной структуре ГПС формируются в виде производственных модулей (ГПМ), гибких автоматических линий (ГАЛ) и участков (ГАУ), а также в виде гибких производственных цехов и заводов.

В механообрабатывающем производстве ГПС представляет собой развитую автоматизированную систему, управляемую от ЭВМ; такая система включает в себя комплекс обрабатывающего оборудования, связанного автоматизированной транспортно-складской системой (АТСС), автоматизированную систему инструментообеспечения (АСИО) и систему автоматического контроля (САК).

В результате применения этих технологий в будущем станет возможным повсеместное использование безлюдных технологий.

Целью данной курсовой работы является автоматизация участка по обработке зубчатого колеса (шестерни).


I. Разработка планировки

1.1 Расчет режимов резания

При назначении элементов режимов резания необходимо учитывать характер обработки, тип и размеры инструмента, материал его режущей части, материал и состояние заготовки, тип и состояние оборудования.

Элементы режимов резания:

1. Глубина резания: t: при черновой обработке назначают по возможности максимальную t, равную всему припуску на обработку или большей его части (75%); при чистовой обработке – в зависимости от требований точности размеров и шероховатости обработанной поверхности.

2. Подача s: при черновой обработке выбирают максимально возможную подачу, исходя из жесткости и прочности системы СПИД, мощности привода станка, прочности твердосплавной пластинки и других ограничивающих факторов; при чистовой обработке – в зависимости от требуемой степени точности и шероховатости обработанной поверхности.

Подача на оборот (мм/об):

Где: So– табличное значение подачи; Ki – поправочные коэффициенты на скорость резания в зависимости от предела прочности sв или твердости НВ обрабатываемого материала, от состояния обрабатываемой поверхности П, от периода стойкости Т, от главного угла в плане j, от марки твердого сплава ТС, от формы заточки инструмента, от глубины обработки Н, от ширины обработки В, от жесткости инструмента.

3. Скорость резания v (м/мин): рассчитывают по формуле, установленной для каждого вида обработки, которая имеет общий вид:


где: Vтабл – табличное значение скорости резания;

Ki – поправочные коэффициенты на скорость резания в зависимости от предела прочности sв или твердости НВ обрабатываемого материала, от состояния обрабатываемой поверхности П, от периода стойкости Т, от главного угла в плане j, от марки твердого сплава ТС, от формы заточки инструмента, от глубины обработки Н, от ширины обработки В, от жесткости инструмента.

4. Число оборотов(об/мин) шпинделя определяется по формуле:

где: d – наибольший диаметр обрабатываемой детали;

v – скорость резания (м/мин).

Результаты расчетов режимов резания сведем в таблицу 1

Таблица 1.1 Результаты расчетов режимов резания

Операцияt, ммs,мм/обV,м/минn, об/мин
05Черновое подрезание наружной цилиндрической поверхности (кольца)- Æ181.74/Æ14810,9124217,13
Черновое подрезание торца (кольца) - Æ115/Æ1001,10,9120210,15
Чистовое растачивание цилиндрической поверхностиÆ1001,50,9214374,73
Чистовое растачивание цилиндрической поверхностиÆ1051,60,9112196
Черновое подрезание торца - Æ181.74/Æ1001,10,9122213,63
Чистовое обтачивание цилиндрической поверхности - Æ181.741,30,9118206,63
Фрезерование 38 зубьев2,2866115,57
10Шлифование внутренней цилиндрической поверхностиÆ1050,012455м/сек157,07
15Шлифование 38 зубьев0,021530м/сек6370

Между операцией 05 и операцией 10 производится термическая обработка детали с целью цементации зубьев. После термообработки производится дробеструйная обработка.

1.2 Нормирование операций технологического процесса

Норма времени – это регламентированное время выполнения некоторого объема работ в определенных условиях одним или несколькими исполнителями соответствующей квалификации. В машиностроении норма времени обычно устанавливается на технологическую операцию.

Штучное время обработки детали:

где Тао – время автоматической обработки, состоит из времени на совершение инструментом холостых и рабочих ходов:

Время холостых ходов:

Где Li – длина i-ого холостого хода, мм

v – скорость быстрого перемещения станка, мм/мин.

N – количество холостых ходов.

Время рабочих ходов:


где Tр.х.i – время i- ого рабочего хода, мин.

L – длина обрабатываемой поверхности, мм;

l – длина врезания, перебега и ускоренного подвода инструмента, мм. Для станков с ЧПУ в большинстве случаев принимается 1-2 мм вследствие высокой жесткости системы СПИД.

i – число рабочих ходов;

n – частота вращения заготовки или инструмента, об/мин;

s – подача на один оборот, мм/об.

Результаты расчетов приведены в таблице 1.2.

Вспомогательное время:

Вспомогательное время, включающее Тв.у. на установку и снятие заготовки и машинно-вспомогательное время Тм.в., включает комплекс приемов, связанных с позиционированием, ускоренным перемещением рабочих органов станка, подводом инструмента вдоль оси в зону обработки и последующим отводом, автоматической смены режущего инструмента путем поворота револьверной головки (резцодержателя) или из инструментального магазина. Эти элементы времени зависят от скоростей перемещений рабочих органов и длины перемещений. При составлении программы управления (ПУ) следует учитывать возможность совмещения приемов и назначать такую последовательность выполнения переходов обработки, чтобы Тм.в. было минимальным. Значения Тв.у. и Тм.в. назначаются по справочным данным. Вспомогательное время Твсп рассчитывается для каждой операции. Результаты расчетов занесены в таблицу 1.2.

Оперативное время находиться по формуле:

Тобс – время организационного обслуживания рабочего места. В состав работ по данному обслуживанию: осмотр, нагрев системы СПУ и гидросистемы, опробование оборудования, получение инструмента от мастера в течение смены, смазывание и очистка станка в течение смены, предъявление контролеру ОТК пробной детали, уборка станка и рабочего места по окончанию работы. К техническому обслуживанию рабочего места относятся: смена затупившегося инструмента, коррекция инструмента на заданные размеры, регулирование и подналадка станка в течение смены, удаление стружки из зоны резания в процессе работы.

Тпер – время на личные потребности, мин.

Время обслуживания рабочего места и время на личные потребности, назначается в процентах от оперативного времени

Штучно-калькуляционное время:

Где N – размер партии деталей, запускаемых в производство;

Тп-з – подготовительно-заключительное время на партию.

Подготовительно-заключительное время Тп-з при обработке на станках с ЧПУ состоит из затрат времени Тп-з1 из затрат Тп-з2, учитывающих дополнительные работы, и времени Тп-з3 на пробную обработку детали:


В затраты Тп-з1 включено время на получение наряда, чертежа, технологический документации на рабочем месте в начале работы и на сдачу в конце смены. На ознакомление с документами и осмотр заготовки затрачивается 4 мин; на инструктаж мастера - 2 мин; на установку рабочих органов станка или зажимного приспособления по двум координатам в нулевое положение – 4 мин; на установку перфоленты – 2 мин; итого на комплекс приемов – 12 мин. Для всех станков с ЧПУ принята единая норма Тп-з1 = 12 мин. Тп-з3 выбираем в зависимости от числа режущих инструментов и числа измеряемых по диаметру поверхностей.

05 Токарная операция.

05.1. Подрезка торца - Æ181.74/Æ148

Глубина снимаемого слоя: t=1 мм;

Подача на оборот:

Скорость резания:

Число оборотов шпинделя:


05.2. Черновое подрезание торца - Æ115/Æ100

механический деталь циклограмма автоматический

Глубина снимаемого слоя: t=1.1 мм;

Подача на оборот:

Скорость резания:

Число оборотов шпинделя:

05.3. Чистовое растачивание цилиндрической поверхности - Æ100


Рабочий ход №1:

Глубина снимаемого слоя: t=1.45 мм;

Подача на оборот:

Скорость резания:

Число оборотов шпинделя:

Рабочий ход №1:

Глубина снимаемого слоя: t=0.05 мм;

Подача на оборот:

Скорость резания:

Число оборотов шпинделя:

05.4. Чистовое растачивание цилиндрической поверхности - Æ105


Глубина снимаемого слоя: t=1.6 мм;

Подача на оборот:

Скорость резания:

Число оборотов шпинделя:

05.5. Черновое подрезание торца - Æ181,74/Æ100

Глубина снимаемого слоя: t=1.1 мм;

Подача на оборот:

Скорость резания:

Число оборотов шпинделя:


05.6. Чистовое обтачивание цилиндрической поверхности - Æ181,74

Глубина снимаемого слоя: t=1.3 мм;

Подача на оборот:

Скорость резания:

Число оборотов шпинделя:

05.7. Фрезерование зубьев.


число проходов.

число заходов.

10 Шлифовальная операция.


продольная или поперечная подача на двойной ход изделия в долях ширины шлифовального круга.

частота вращения детали.

ширина шлифовального круга.

длина рабочего хода.

15 Зубошлифовальная операция.

Полученные расчеты сведем в таблицу 1.2

Таблица 1.2 Технологическое нормирование операций

№ оп.ОперацияТосн, мин

Тв,

мин

Топ,

мин

Тпер+Tобс, мин

Тп-з,

мин

Тшт_к,

мин

1Токарная11,091,2312,321,2322714,10
2Шлифовальная0,0570,40,65770,0657130,9835
3Зубошлифовальная5,50,66,10,61137

1.3Выбор оборудования

1.3.1 Выбор основного технологического оборудования

Определение необходимого количества технологического оборудования.

Перед выбором основного технологического оборудования необходимо определить требуемое его количество для обеспечения выполнения поставленного задания.

Расчетное количество оборудования определяется по формуле:

, где

– штучное время на соответствующей операции;

- объем партии ();

- годовой фонд работы оборудования ().

Коэффициент загрузки оборудования по времени определяется следующим образом:

, где

- принятое количество оборудования.

Полученные результаты сведем в таблицу:

Таблица 1.3. Расчет количества основного оборудования

№ оп.Наименование операцииТшт_к , минnрасчnпрηосн
1Токарная14,100,734410,73
2Шлифовальная0,98350,051210,05
3Зубошлифовальная70,364610,36

Общее количество применяемого основного оборудования: N = 3.

Выбор оборудования

Технологическое оборудование определяет технико-экономические характеристики ГПС, а также показатели обрабатываемых изделий. С учетом поставленного технического задания и технологии получения конечного изделия выбираем следующее технологическое оборудование:

С целью концентрации операций на одном рабочем месте (операция 05) используем токарный станок с ЧПУ модели ИРТ180ПМФ4, позволяющий в условиях автоматизированного производства при патронном закреплении обрабатываемой заготовки выполнять операции точения, фрезерования плоскостей, пазов, производить сверление и растачивание отверстий, а также нарезать резьбу.


Таблица 2 Характеристики токарного станка ИРТ180ПМФ4

ПараметрЗначение
1

Наибольшие размеры обрабатываемой поверхности:

Диаметр, мм

Длина, мм

200

165

2Число управляемых координат (в том числе одновременно), шт:3(2)
3Число индексируемых позиций револьверной головки, шт:12
4

Дискретность перемещений:

Линейных (X и Z), мм

Угловых (С)

0,001

0,001

5Частота вращения шпинделя, 1/мин:20…4000
6

Рабочие скорости:

По Х, мм/мин

По С, 1/мин

1…5000

0,01…16

7

Установочные перемещения:

По Х, м/мин

По Z, м/мин

По С, 1/мин

10

15

16

8Наибольшее усилие резания по Х и Z, кН:4; 6
9Наибольший крутящий момент на шпинделе, Нм:630
10

Точность позиционирования, мкм:

По Х

По Z

16

20

11Мощность привода главного движения, кВт:18,3…25
12Габаритные размеры (длина х ширина х высота), мм:2751 х 2170 х 1650
13Масса станка (с дополнительным оборудованием), кг:3000

Для достижения точности и значений шероховатости применим следующие шлифовальное оборудование: внутришлифовальный станок 3А227В и зубошлифовальный станок 5843

Внутришлифовальный станок 3А227В предназначен для шлифования внутренних цилиндрических поверхностей. Данную модель выбираем, так как она соответствует по размерам, массе обрабатываемой детали.

Зубошлифовальный станок 5843 предназначен для шлифования зубьев. Данную модель выбираем, так как она соответствует параметрам детали и параметрам зубьев, которые мы должны получить.


1.3.2 Выбор вспомогательного оборудования

Для построения ГПС наряду с основным оборудованием применяют и вспомогательное, которое обеспечивает работу основного оборудования в автоматическом режиме в течение заданного срока. К таким вспомогательным средствам относят: робототехническое оборудование (загрузка-разгрузка, смена инструмента, приспособления); средства складирования заготовок, готовых изделий, приспособлений, инструментов; транспортно-накопительные устройства, контрольно-измерительные средства и др.

Для поштучной выдачи заготовки из магазина будем использовать отсекатель. Отсекатель на выходе содержит склиз для перемещения заготовки в зону действия промышленного робота и ее точного позиционирования.

Для транспортировки заготовки от отсекателя к токарному станку ИРТ180ПМФ4 будем использовать встроенный промышленный робот М10П62.01. Данный робот имеет сферическую систему координат, поэтому его можно использовать для сложных движений и точного позиционирования руки робота.После токарной обработки деталь поступает на склиз, который направляет заготовку в магазин стержневого типа. Данный магазин удобен для складирования простыми средствами.

С целью обеспечения точной установки заготовки в патроне основного оборудования и удобства автоматической загрузки-выгрузки заготовок для шлифовальных операций применим промышленный робот "Универсал-5". Данный робот выбираем с учетом грузоподъемности и возможности точного позиционирования схвата руки робота.

Транспортировка деталей на участок термической обработки и обратно к накопителю перед шлифовальным станком производится с помощью автоматических транспортных тележек, которые перевозят детали в магазинах.


1.4 Разработка ГПС – планировка РТУ

Роботизированные комплексы для механообработки заготовок типа тел вращения могут иметь различные компоновочные схемы в зависимости от выполняемых ими технологических задач. Наибольшее применение в машиностроении получили РТК, состоящие из автоматизированных станков (токарных, кругло-шлифовальных, многоцелевых и др.), оснащенных накопительными устройствами для заготовок и деталей, системой программного управления и обслуживаемых с помощью ПР. В первую очередь такие РТК предназначаются для серийного изготовления деталей мелких и средних размеров с небольшим временем обработки. Комплексы могут оснащаться как встроенным в станок, так и внешним ПР напольного или портального типа.

Разработанный участок состоит из трех единиц технологического оборудования: токарного центра, внутришлифовального станка и зубошлифовального станка. Обслуживание станков производится двумя промышленными роботами со сферическими системами координат.

Обработка заготовок начинается по мере поступления заготовок на участок с помощью транспортной тележки. Она подвозит и разгружает магазины с заготовками. Максимальная емкость магазина – 8 заготовок.

Дальше производится поштучная выдача заготовок в зону встроенного промышленного робота токарного станка с помощью отсекателя и склиза.

ПР токарного станка захватывает заготовку со склиза и переносит ее в зону станка. После обработки заготовки на первом установе ПР переворачивает заготовку и снова вставляет ее в патрон.

После токарной обработки ПР по склизу отправляет заготовку в магазин стержневого типа.

Транспортная тележка с помощью встроенного ПР ставит магазин себе на платформу и отвозит его на термообработку.

После термообработки заготовки подвергаются отделочным операциям – шлифованию.

Для этого в начале производится их поштучная выдача с помощью отсекателя того же типа, что и для токарной обработки. После отсекателя заготовка с помощью промышленного робота "Универсал-5" транспортируется в зону внутришлифовального станка. После шлифования внутренней цилиндрической поверхности производится шлифование зубьев на зубошлифовальном станке 5843. Обработка на этом станке осуществляется длительное время, поэтому чтобы внутришлифовальный станок не простаивал ПР осуществляет его дополнительную загрузку с других участков.

После шлифовальных операции готовые детали складируются в магазин стержневого типа с помощью склиза.


II. Выбор датчиков и разработка циклограммы работы ГПС – РТу

Технические средства для контроля объектов на нижнем (исполнительском) уровне АСУ ГАУ определяются их назначением, конструкцией и условиями работы. Для металлорежущих станков ими могут быть датчики перемещений рабочих органов, путевые (контактные и бесконтактные) выключатели, датчики контроля параметров процесса (усилия резания, температуры в шпиндельном узле, положения режущей кромки инструмента, виброускорений в резцовой головке, работы привода и другие), обеспечивающие работу станка в автоматическом режиме. Промышленные роботы обычно оснащаются датчиками позиционирования и касания (для контроля захвата изделия), а транспортно-накопительные устройства – датчиками типа путевых выключателей.

В качестве датчиков "включения/выключения" приводов станков, а также шагового конвейера применен вращающийся трансформатор. Особенностью такого датчика является непрерывное измерение перемещения контролируемого органа и преобразование результатов измерения в непрерывный электрический сигнал, модулированный по фазе.

Для определения "наличия/отсутствия" заготовки в захватном устройстве ПР и в патроне станка, его состояния станка "зажат/разжат" применены тактильные датчики. В общем случае такие датчики состоят из воспринимающего давление со стороны объекта слоя (либо фольга, либо резина с металлическими вкраплениями) и контакторов, вместе они образуют систему реле.

В качестве датчиков положения, определяющих состояние рабочих органов оборудования, применены индуктивные бесконтактные выключатели, путевые микровыключатели, а также фотодатчики.

Описание циклограммы

Циклограмма – это графическое отображение взаимодействия технологического, вспомогательного и транспортного оборудования в пределах ГАУ. Циклограмма также позволяет определить состояние всех элементов ГАУ в определенный момент времени.

Рассмотрим построение циклограммы, описывающей момент времени обработки детали, начиная с поступления ее на участок до отправки ее на термообработку.

Поступление заготовок на участок регистрирует датчик контактный датчик S3. Далее срабатывает отсекатель – датчик S1. После отделения одной заготовки от остальных она поступает на склиз – датчик S19 (путевой микропереключатель). По его сигналу промышленный робот токарного станка делает установочные движения над заготовкой – датчики S4, S7, S10, S13. Датчики S4, S10 и S13 фиксируют угловое перемещение руки робота, а датчик S7 линейное перемещение в зоне склиза.

После точного позиционирования схвата промышленного робота над заготовкой происходит зажим ее – датчик S16 и проверка наличия ее в схвате – S18.

Далее промышленный робот совершает поворот руки в вертикальном направлении – S16, поворачивается весь блок руки – датчик S15 и вращается сама кисть – S12. После данных перемещения схват с заготовкой находится напротив патрона станка. Включается электродвигатель линейного перемещения и заготовка оказывается в патроне станка – датчик S9.

После срабатывания датчика S9 патрон зажимает заготовку – S21. Наличие заготовки фиксируется тактильным датчиком – S23.

Далее промышленный робот, чтобы не мешать процессу обработки, убирает свою руку из зоны обработки – датчики S9, S12.

После этого включается привод станка и производится обработка детали на 1-ом установе. Промышленный робот по окончанию обработки и отводу режущего инструмента возвращается в свое прежнее положение в зоне станка – S12 и S9. Схват ПР зажимает заготовку – датчик S16. Проверяется наличие заготовки в схвате – S18 и патрон станка разжимается – S22.

Схват отходит от патрона (S9) , делает переустанов (S12) и снова вставляет заготовку в патрон (S9). Патрон зажимает заготовку – S21, проверяется ее наличие – S23. Рука робота отходит – S9 и S6. Производится окончательная обработка заготовки на токарном станке ИРТ180ПМФ4.

Обработанная деталь захватывается рукой промышленного робота – датчики S9→S6→S16→S18. Патрон разжимается (S22) и промышленный робот перемещает заготовку на входной склиз магазина стержневого типа (S9, S4, S13 и S7, S17.

В качестве датчиков S4, S5, S6, S20 используют вращающиеся трансформаторы. Данный вид датчиков позволяет точно определить угловое перемещение.

Датчики S3, S19 и S1, S2, S9 и S7, S8 и S19 служат для определения крайних положений руки робота. Они являются не точными и реализуются с помощью микропереключателей различных конструкций.

Датчики S10-S17 и S21, S22 служат для определения положения руки робота по вращению приводящих в движение двигателей робота. Они преобразуют угловое перемещение в электрический сигнал.

Тактильные силомоментные датчики – S18 и S23 – служат для определения наличия заготовки.


III. Разработка технологических наладок для станков с ЧПУ

Для обработки конкретной поверхности детали необходимо определить, каким образом будет перемещаться инструмент. Для этого определяется траектория его движения, включающая рабочие ходы, сопровождающиеся снятием слоя металла, и холостые ходы.

Рабочие ходы движения инструмента определяют контур детали, геометрическую точность получаемой поверхности (размер, шероховатость). Холостые ходы характеризуются быстрым перемещением инструмента с точным позиционированием в заданной точке.

Траектория движения инструмента в станках с ЧПУ задается с помощью специальных кодов(функций), записываемых в управляющую программу в определенной последовательности.

Также в программе задается система координат, в которой описывается перемещение инструмента. С помощью специальных кодов можно управлять также и вспомогательными операциями (подача СОЖ, смена инструмента).

Наиболее часто используемые функции при программировании

Таблица 3.1 Основные функции ЧПУ

ФункцияНазначение
G00Быстрое перемещение в начальную точку
G01Линейная интерполяция
G02/G03Круговая интерполяция по часовой стрелке/против часовой стрелки
G17/G18/G19Выбор плоскости XOY/XOZ/YOZ
G33Нарезание резьбы с постоянным шагом
G40Отмена коррекции
G41/G42Инструмент подходит слева/справа относительно заготовки
G43/G44Коррекция инструмента положительная/отрицательная
G60Точное позиционирование
G81/G82Сверление без задержки/с задержкой в конце
G90/G91Абсолютная/относительная система координат детали
G92Переход из системы координат станка в систему координат детали
G94/G95Подача в (мм/мин)/(мм/об.)
G96/G97Скорость в (м/мин)/(об./мин)
Вспомогательные функции
M02Конец программы
M03/M04Вращение шпинделя по часовой стрелке/против часовой стрелки
M05Останов шпинделя


IV. Разработка отсекателя заготовок

Отсекатель служит для поштучной выдачи заготовок в зону промышленного робота из магазина шахтного типа. Заготовки поступают на участок в уже упорядоченном виде в магазине.

Для заготовки типа зубчатого колеса (шестерни) будем использовать магазин шахтного типа. Данный магазин выберем высотой равной 400 мм. Такая высота магазина позволяет доставлять на участок сразу 8 заготовок.

Отсекатель будем разрабатывать следующего вида:

Данная схема содержит магазин (1), заготовки (2), пластины отсекателя (3), планки для передачи движения (4), зубчатый сегмент (5), рейку (6) и гидроцилиндр (7).

Последовательность работы отсекателя следующая. В первоначальный момент времени нижняя пластина отсекателя удерживает все заготовки. Потом обе пластины отсекателя начинают одновременно двигаться в взаимнопротивоположном направлении – верхняя пластина влево, а нижняя в правую сторону. Верхняя пластина отделяет верхние заготовки от нижней и та под действием силы тяжести падает вниз. То есть нам необходимо сообщить пластинам отсекателя синхронное взаимное противоположное движение (качания).

Это совершается следующим образом. Поступательное движение поршня гидроцилиндра двигает рейку. Рейка через зубчатую передачу преобразует свое поступательное движение во вращательное движение зубчатого колеса. А зубчатое колесо в свою очередь передает движение пластинам отсекателя.

Расчет отсекателя состоит в следующем:

· расчет зубчатого сегмента передающего движение;

· расчет планок создающих кинематическую связь зубчатого колеса с пластинами отсекателя;

· расчет зубчатой передачи между зубчатым сегментом и рейкой;

· выбор гидроцилиндра.

Составим схему замещения отсекателя.

Пластина отсекателя должна переместится на расстояние 2m, равное диаметру заготовки Æ184.5 мм. Расстояние между пластинами равно высоте заготовки 2h=49.2 мм.

Пусть длина планки, передающей движение, равняется m=92,25 мм.

Тогда радиус точки B будет следующим:

Следовательно .

Сегмент зубчатого колеса равен:

Это почти 180°. Поэтом вместо сегмента будем использовать в отсекателе половину зубчатого колеса.

Задачу выбора гидроцилиндра будем решать, применяя закон сохранения энергии. Энергия, переданная поршнем гидроцилиндра равняется энергии, возникающей при движении пластин отсекателя.

Энергия поршня:

(4.1)

,(4.2)

где А1 и А2 – работа сил трения пластины верхней и нижней соответственно.

,(4.3)

где - коэффициент трения между металлом заготовки и металлом пластины;

- массы заготовок действующих на пластины;

- расстояния, на которые сдвинулись пластины.


Следовательно,

,(4.4)

где М – масса заготовки.

Длина дуги на которую вращался зубчатый сегмент равен следующему выражению:

,(4.5)

где - радиус сегмента;

- угол, на который повернулся сегмент.

То есть:

(4.6)

Подставим выражения (4.4) и (4.6) в формулу (4.1). Получим следующее:


Отсюда,

Для экономии металла возьмем =100 мм.

(из справочных данных по физике).

Тогда

Ход поршня найдем из выражения (4.6):

Исходя из требуемой силы и хода поршня выбираем гидроцилиндр по ГОСТу

Рассчитаем параметры реечной передачи по формулам данным в справочниках. Данные расчеты сведем в таблицу 4.1:

№п-траНаименование параметраЗначение
1Модуль зуба, m4
2Шаг нормальный, 12,56
3Высота зуба, 10
4Ширина рейки, 12
5Линейное перемещение рейки L, соответствующее углу поворота колеса, 1.74γ
6Угол поворота колеса при перемещении рейки на L,
7Количество зубьев, z50
8Делительный диаметр зубчатого колеса, d200
9Диаметр вершин зубьев208
10Диаметр впадин зубьев190

ЗАКЛЮЧЕНИЕ

В результате проведенной работы разработал ГПС по механообработке детали типа зубчатое колесо (шестерня). Данная ГПС состоит их трех единиц технологического оборудования. Причем одна единица основного оборудования стоит параллельно двум единицам оборудования отделочных операций (шлифовальных). Транспортировка обрабатываемых деталей производится с помощью АТСС, включающая автоматическую тележку и в зоне локальных перемещений применены промышленные роботы со сферическими системами координат. Таким образом, эта система представляет собой роботизированный технологический участок по обработке деталей типа "Зубчатое колесо" при их патронном закреплении.

На технологическом и вспомогательном оборудованиях установлены датчики, позволяющие определить состояние системы в определенный момент времени. Выбор датчиков произведен в соответствии с видом установленного оборудования, типом приводов механизмов рабочих органов и в соответствии требованиями эксплуатации оборудования.

В заключительной части работы произвел расчет механизма поштучной выдачи заготовок – отсекателя.


Список использованной литературы

1. Справочник технолога машиностроителя в двух томах. Под ред. Косилова А.Г., Мещерекова. М.: "Машиностроение" 1981.

2. Таблицы с режимами резания

3. Справочник технолога-машиностроителя. Под ред. Анурьева В.И.: В трех томах. М.: "Машиностроение" 1992.

4. Промышленные роботы в машиностроениии. Альбом схем и чертежей. Под ред. Соломенцева Ю.М., М.: "Машиностроение" 1987.

5. РТК и ГПС в машиностроении. Альбом схем и чертежей. Под ред. Соломенцева Ю.М., М.: "Машиностроение" 1989.

6. Промышленные роботы. Справочник. Козырев Ю.Г. М.: "Машиностроение" 1983.

7. Программное управление станками. Под ред. Сосонкина В.Л., М.: "Машиностроение" 1981.

8. Промышленные роботы: конструкция, управление, эксплуатация. Костюк В.И., К.: "Выща школа" 1985.

9. Станочное оборудование автоматизированного производства. Бушуев В.В. В двух томах. М.: "Станкин" 1993.

10. Курсовое проектирование по теории механизмов и машин: Учеб. пособие для инж.-техн. спец. вузов/В.К. Акулич, П.П. Анципорович, Э.И. Астахов и др.; Под общ. ред. Г.Н.Девойно. – Мн.: Высш. шк., 1986. – 255 с.: ил.

11. Детали машин: Учебник для студентов машиностроительных и механических специальностей вузов/ Решетов Д.Н. – М.: Машиностроение, 1989. – 496 с.: ил.


Приложение 1

Модель структуры

ТП1Операция 05Установ 05.1Позиция 05.1.1Переход 05.1.1.1Р.х. 05.1.1.1
Позиция 05.1.2Переход 05.1.2.1Р.х. 05.1.2.1
Позиция 05.1.3Переход 05.1.3.1Р.х. 05.1.3.1.1
Р.х. 05.1.3.1.2
Позиция 05.1.4Переход 05.1.4.1Р.х. 05.1.4.1.1
Установ 05.2Позиция 05.1.1Переход 05.2.1.1Р.х. 05.2.1.1.1
Позиция 05.1.2Переход 05.2.2.1Р.х. 05.2.2.1.1
Позиция 05.1.3Переход 05.2.3.1Р.х. 05.2.3.1.1
Операция 10Установ 10.1Позиция 10.1.1Переход 10.1.1.1Р.х. 10.1.1.1.1
Операция 15Установ 15.1Позиция 15.1.1Переход 15.1.1.1Р.х. 15.1.1.1.1

Приложение 2

Модель содержания

Технологический процесс 1

ПоступлениеТранспортировкаТранспортировка (ЦТО и обратно)На склад
Операция 1.1 Операция 1.2 Операция 1.3

Операция 05.1

Зажим заготовкиПереустановкаСнятие
Уст 05.1.1Уст 05.1.2

Установ 05.1.1

Подвод блока инструментов

Смена

инструмента

Смена

инструмента

Смена

инструмента

Отвод блокаинструмента
Поз. 05.1.2.1Поз. 05.1.2.2Поз. 05.1.2.3Поз. 05.1.2.4

Позиция 05.1.1.3

Подвод инструмента Отвод инструмента
Переход 05.1.1.3.1

Переход 05.1.1.3.1

Врезание ВрезаниеВыход
Рабочий Ход 05.1.1.3.1.1Рабочий Ход 05.1.1.3.1.2

Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно