Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Сглаженная поверхность для границы трех атомов в пространстве

Тип Реферат
Предмет Информатика и программирование
Просмотров
1020
Размер файла
142 б
Поделиться

Ознакомительный фрагмент работы:

Сглаженная поверхность для границы трех атомов в пространстве

Федеральное агентство по образованию РФ

ГОУ ВПО «Волгоградский государственный университет»

Факультет математики и информационных технологий

Кафедра ПМП

Семестровая работа на тему:

«Сглаженная поверхность для границы трёх атомов в пространстве»

Выполнил:

студент группы

ПМб-091

Орлов А.А.

Научный руководитель:

Чернышев И.В.

Волгоград 2011

Содержание

Введение

Постановка задачи

Метод (схема) решения поставленной задачи

Заключение


К задаче о построении сглаженной поверхности в пространстве сводится задача вычисления эффективных значений объема и поверхности молекул, при котором молекула моделируется областью с гладкой границей, представляющей из себя объеденение сферических фрагментов. Например для вычисления объема полости, занимаемой молекулой солюта в растворе, а также величины возникающей при этом поверхности раздела, что является необходимым звеном в построении количественных моделей взаимодействия растворенного вещества с растворителем.

Идея предлагаемого геометрического метода сглаживания формы молекулы состоит в том, что граница молекулы представляется в виде поверхности, у которой радиус кривизны вогнутых частей в любой точке не меньше некоторого заданого значения. Этим радиусом скругления может быть, например, эффективный радиус молекул некоторого химического соеденинения, учавствующего во взаимодействии с рассматриваемой молекулой.

В данной работе необходимо построить сглаженную поверхность для заданных 3-х атомов и радиусу большого атома.

Постановка задачи

Задача построения поверхности заключаетя в создании алгоритма с помощью которого, по заданым координатам и радиусам 3-х атомов, а также радиусу атома, касающегося их, можно построить сглаженную поверхность для границы данных атомов в пространстве.

Метод (схема) решения поставленной задачи

1. Программа считывает данные с файла shari.txt

Далее вычисляются координаты центра атома, который касается 3-х

2. остальных.

Координаты центра атома радиуса RS , касающегося трех атомов с центрами в точках Oi(xi,yi,zi), Oj(xj,yj,zj), Ok(xk,yk,zk) определяются следующими формулами:


где

Для сокращения записи использованы обозначения

3. Вычисляютя координаты точек касания большого атома с 3-мя остальными.

Для каждой точки касания необходимо выполнение 3-х условий:

A. Точка касания принадлежит большому атому.

Б. Точка касания принадлежит атому с которым касается большойй.

В. Точка касания принадлежит каноническому уравнению прямой, которое составленно по координатам центра большого атома и координатам центра атома, которого касается большой атом:

(Xkosn - Xc)2+ (Ykosn - Yc)2 + (Zkosn - Zc)2=Rc2

(Xkosn - Xn)2 + (Ykosn - Yn)2 + (Zkosn - Zn)2 =Rn2

Xkosn – XnYkosn - YnZkosn – Zn

Xc – Xn Yc – Yn Zc – Zn

Где N=1, 2, 3 соответственно.

Xc,Yc,Zc – координаты большого атома.

Xkosi,Ykosi,Zkosi,– координаты точки касания i-го атома и большого атома.

Решая данную ситему находим координаты точек касания.

4.Строются три уравнения плоскости, через координаты двух точек касания и координаты центра большого атома.Уравнения строются через определитель 3*3

X – X1 Y – Y1 Z – Z1

X2 – X1 Y2 – Y1 Z2 – Z1 = 0

Xc – X1 Yc – Y1 Zc – Z1

X – X1 Y – Y1 Z – Z1

X3 – X1 Y3 – Y1 Z3 – Z1 = 0

Xc – X1 Yc – Y1 Zc – Z1

X – X2 Y – Y2 Z – Z2

X3 – X2 Y3 – Y2 Z3 – Z2 = 0

Xc – X2 Yc – Y2Zc – Z2

Далее находим точки пересечения каждой плоскости с поверхностью большого атома.

(X - Xc)2+ (Y - Yc)2 + (Z - Zc)2=Rc2

При этом должно выполнятся условие:

Xkosi<= X <= XkosjЕсли Xkosi< Xkosj

Xkosj<= X <= XkosiЕсли Xkosj< Xkosi


Где (i=1,j=2) (i=1,j=3) (i=2,j=3)

5) В результате работы программа строит:

A) 3 атома по координатам считанным с файла shari.txt

Б) Атом с радиусом Rc считанным с клавиатуры, который касается 3-х остальных.

В) Сглаженную поверхность.

Г) Оси координат.

Д) Таблицу содержащую координаты точек касания большого атомоа с другими 3-мя атомами.


После поворота системы шаров на угол 900 вокруг оси

X=x[1]+x[2]+x[3]

Z=z[1]+z[2]+z[3]

Заключение

Задачей данной семестровой работы являлась построение алгоритма, с помощью которого строится сглаженная поверхность для границы трех атомов в пространстве.

Итогом работы можно считать приложение для ОС Windows, которое по заданным координатам и радиусам 3-х атомов, а также радиусу большого атома строит сглаженную поверхность.


Приложение

Текст программы имитации движения частиц в пористой среде для ОС Windows.

алгоритм сглаженная поверхность атом

#include<stdio.h>

#include<stdlib.h>

#include<graphics.h>

#include<math.h>

#define ESC 27

#define DOWN 80

#define UP 72

#define ENTER 13

int x[4],y[4],z[4],r[4],Rc,raz=0,kol_vr;

int skok=1,schit=0;

double aj,bj,cj,ak,bk,ck,Ris,Rjs,Rks,p[5],alp1,alp2,alp3,al1,al2,al3,al4,alp4;;

double Xc,Yc,Zc,dj,dk,sin_a,sin_b,Xvr,Zvr,R1,R2,R3,R4,ugol[1500],Rad[1500],XX[1500],YY[1500],ZZ[1500];

double Bx,By,Bz,Cx,Cy,Cz,A,sum[3];

double Xkos1,Ykos1,Zkos1,yc1,xc1,zc1,XYc1,ZYc1,M1,M2;

double Xkos2,Ykos2,Zkos2,yc2,xc2,zc2,XYc2,ZYc2,M3,M4;

double Xkos3,Ykos3,Zkos3,yc3,xc3,zc3,XYc3,ZYc3,M5,M6;

void dano(void)

{ FILE *f=fopen("shari.txt","r");

int i;

printf("KOORDINATI 3 SFER I IH RADIUSIn");

for(i=1;i<=3;i++)

{

printf("X%d=",i);fscanf(f,"%d",&x[i]);printf("%dn",x[i]);

printf("Y%d=",i);fscanf(f,"%d",&y[i]);printf("%dn",y[i]);

printf("Z%d=",i);fscanf(f,"%d",&z[i]);p[i]=z[i];printf("%dn",z[i]);

printf("R%d=",i);fscanf(f,"%d",&r[i]);printf("%dn",r[i]);

}

Zvr=(z[1]+z[2]+z[3])/3;

Xvr=(x[1]+x[2]+x[3])/3;

R1=(sqrt((x[1]-Xvr)*(x[1]-Xvr)+(z[1]-Zvr)*(z[1]-Zvr)));

R2=(sqrt((x[2]-Xvr)*(x[2]-Xvr)+(z[2]-Zvr)*(z[2]-Zvr)));

R3=(sqrt((x[3]-Xvr)*(x[3]-Xvr)+(z[3]-Zvr)*(z[3]-Zvr)));

double x1,x2,y1,y2;

x1=x[1]-Xvr;x2=R1;y1=z[1]-Zvr;y2=0;

alp1=(x1*x2+y1*y2)/((sqrt(x1*x1+y1*y1)))/(sqrt(x2*x2+y2*y2));

al1=acos(alp1)*180/M_PI;

x1=x[2]-Xvr;x2=R2;y1=z[2]-Zvr;y2=0;

alp2=(x1*x2+y1*y2)/((sqrt(x1*x1+y1*y1)))/(sqrt(x2*x2+y2*y2));

al2=acos(alp2)*180/M_PI;

x1=x[3]-Xvr;x2=R3;y1=z[3]-Zvr;y2=0;

alp3=(x1*x2+y1*y2)/((sqrt(x1*x1+y1*y1)))/(sqrt(x2*x2+y2*y2));

al3=acos(alp3)*180/M_PI;

printf("vvedite radius bolshogo sharan");

scanf("%d",&Rc);

initwindow (1024,860);

}

int stroim(void)

{ int i,k,j;double max;

max=p[1];

for(i=1;i<=4;i++)

{if (p[i]>=max) {max=p[i];k=i;}}

for(i=1;i<4;i++)

{

if (z[i]==max) {p[k]=-1;return i;}

}

p[4]=-1;

return 4;

}

void risuem(void)

{

setcolor(7);

setlinestyle(0,0,1);

char st1[5];

char st2[5];

char st3[5];

xc1=Xc-x[1];xc2=Xc-x[2];xc3=Xc-x[3];

yc1=Yc-y[1];yc2=Yc-y[2];yc3=Yc-y[3];

zc1=Zc-z[1];zc2=Zc-z[2];zc3=Zc-z[3];

XYc1=(-xc1*y[1]+yc1*x[1])/yc1;XYc2=(-xc2*y[2]+yc2*x[2])/yc2;XYc3=(-xc3*y[3]+yc3*x[3])/yc3;

ZYc1=(-zc1*y[1]+yc1*z[1])/yc1;ZYc2=(-zc2*y[2]+yc2*z[2])/yc2;ZYc3=(-zc3*y[3]+yc3*z[3])/yc3;

M1=((Rc*Rc)-(Xc*Xc+Yc*Yc+Zc*Zc))/(-2);

M2=((r[1]*r[1])-(x[1]*x[1]+y[1]*y[1]+z[1]*z[1]))/(-2);

M3=((r[2]*r[2])-(x[2]*x[2]+y[2]*y[2]+z[2]*z[2]))/(-2);

M4=((r[3]*r[3])-(x[3]*x[3]+y[3]*y[3]+z[3]*z[3]))/(-2);

Ykos1=(M1-M2-XYc1*Xc+XYc1*x[1]-ZYc1*Zc+ZYc1*z[1])/(xc1*Xc/yc1-xc1*x[1]/yc1+(Yc-y[1])+zc1*Zc/yc1-zc1*z[1]/yc1);

Ykos2=(M1-M3-XYc2*Xc+XYc2*x[2]-ZYc2*Zc+ZYc2*z[2])/(xc2*Xc/yc2-xc2*x[2]/yc2+(Yc-y[2])+zc2*Zc/yc2-zc2*z[2]/yc2);

Ykos3=(M1-M4-XYc3*Xc+XYc3*x[3]-ZYc3*Zc+ZYc3*z[3])/(xc3*Xc/yc3-xc3*x[3]/yc3+(Yc-y[3])+zc3*Zc/yc3-zc3*z[3]/yc3);

Xkos1=Ykos1*xc1/yc1+XYc1;Xkos2=Ykos2*xc2/yc2+XYc2;Xkos3=Ykos3*xc3/yc3+XYc3;

Zkos1=Ykos1*zc1/yc1+ZYc1;Zkos2=Ykos2*zc2/yc2+ZYc2;Zkos3=Ykos3*zc3/yc3+ZYc3;

line(40,600,200,600);line(40,640,200,640);line(40,680,200,680);line(40,720,200,720);line(40,760,200,760);

line(80,640,80,800);line(120,640,120,800);line(160,640,160,800);line(200,600,200,800);

outtextxy(53,618,"ТОЧКИКАСАНИЯ");

outtextxy(47,655,"АТОМ");outtextxy(87,655,"¹1");outtextxy(127,655,"¹2");outtextxy(167,655,"¹3");

outtextxy(45,695,"Xkos");outtextxy(45,735,"Ykos");outtextxy(45,775,"Zkos");

sprintf(st1,"%.1f",Xkos1);sprintf(st2,"%.1f",Xkos2);sprintf(st3,"%.1f",Xkos3);

outtextxy(81,695,st1);outtextxy(121,695,st2);outtextxy(161,695,st3);

sprintf(st1,"%.1f",Ykos1);sprintf(st2,"%.1f",Ykos2);sprintf(st3,"%.1f",Ykos3);

outtextxy(81,735,st1);outtextxy(121,735,st2);outtextxy(161,735,st3);

sprintf(st1,"%.1f",Zkos1);sprintf(st2,"%.1f",Zkos2);sprintf(st3,"%.1f",Zkos3);

outtextxy(81,775,st1);outtextxy(121,775,st2);outtextxy(161,775,st3);

setlinestyle(0,0,1);

p[4]=Zc;

int q=0,i,j,svet=4;

double h=Rc;

for(q=1;q<=4;q++)

{

i=stroim();

if (i==4)

{ setcolor(15);

if (raz!=0) setlinestyle(3,0,1);

circle(Xc+40,800-Yc,Rc);

ellipse(Xc+40,800-Yc,180,360,Rc,Rc/2);

ellipse(Xc+40,800-Yc-Rc/2,180,360,Rc-(Xc+Rc-(sqrt(Rc*Rc-(Rc/2)*(Rc/2))+Xc))-2,Rc/4);

ellipse(Xc+40,800-Yc+Rc/2,180,360,Rc-(Xc+Rc-(sqrt(Rc*Rc-(Rc/2)*(Rc/2))+Xc))-2,Rc/4);

setlinestyle(1,0,1);

ellipse(Xc+40,800-Yc,0,180,Rc,Rc/2);

ellipse(Xc+40,800-Yc-Rc/2,0,180,Rc-(Xc+Rc-(sqrt(Rc*Rc-(Rc/2)*(Rc/2))+Xc))-2,Rc/4);

ellipse(Xc+40,800-Yc+Rc/2,0,180,Rc-(Xc+Rc-(sqrt(Rc*Rc-(Rc/2)*(Rc/2))+Xc))-2,Rc/4);

if (raz==0) setlinestyle(0,0,1);

}

if (i!=4)

{

if (raz==0)

{

setcolor(0);setfillstyle(0,0);

pieslice(x[i]+40,800-y[i],0,360,r[i]);

setcolor(svet);setlinestyle(0,0,1);

}

setcolor(svet);

setcolor(10);

char er[15];

sprintf(er,"ñôåðà ¹%d",i);

circle(x[i]+40,800-y[i],r[i]);outtextxy(x[i]+40,800-y[i],er);

ellipse(x[i]+40,800-y[i],180,360,r[i],r[i]/2);

ellipse(x[i]+40,800-y[i]-r[i]/2,180,360,r[i]-(x[i]+r[i]-(sqrt(r[i]*r[i]-(r[i]/2)*(r[i]/2))+x[i]))-2,r[i]/4);

ellipse(x[i]+40,800-y[i]+r[i]/2,180,360,r[i]-(x[i]+r[i]-(sqrt(r[i]*r[i]-(r[i]/2)*(r[i]/2))+x[i]))-2,r[i]/4);

setlinestyle(3,0,1);

ellipse(x[i]+40,800-y[i],0,180,r[i],r[i]/2);

ellipse(x[i]+40,800-y[i]-r[i]/2,0,180,r[i]-(x[i]+r[i]-(sqrt(r[i]*r[i]-(r[i]/2)*(r[i]/2))+x[i]))-2,r[i]/4);

ellipse(x[i]+40,800-y[i]+r[i]/2,0,180,r[i]-(x[i]+r[i]-(sqrt(r[i]*r[i]-(r[i]/2)*(r[i]/2))+x[i]))-2,r[i]/4);

if (raz==0) setlinestyle(0,0,1);

if (svet==2) svet=14;

else svet=svet-2;

}

}

raz=raz+1;

for(i=1;i<=3;i++)

{p[i]=z[i];}

p[4]=Zc;

if (raz==1) risuem();

}

void sechen(void)

{ setcolor(7);

setlinestyle(0,0,2);

double xp,yp,pol1,pol2,mon=0;

double x1,x2,y1,y2;

int i,smen=0,nt;

int Xmen;

double stat1,stat2,stat3,stat4,pl;

double AD,CB,ADY,DISC,ABD,AC,ABX;

double at,bt,ct,Yris1,Zris1,Yris2,Zris2,gr1,gr2,Xris1,Xris2;

for(i=0;i<3;i++)

{

if (i==0)

{

if (abs(Xkos3-Xkos1)>abs(Ykos3-Ykos1))

{

if (Ykos1>Ykos3) {pol2=Ykos1;pol1=Ykos3;}

else {pol2=Ykos3;pol1=Ykos1;}

smen=1;

if (Xkos1>Xkos3) {gr1=Xkos3;gr2=Xkos1;}

else {gr1=Xkos1;gr2=Xkos3;}

}

else

{ if (Xkos1>Xkos3) {pol2=Xkos1;pol1=Xkos3;}

else {pol2=Xkos3;pol1=Xkos1;}

smen=2;

if (Ykos1>Ykos3) {gr1=Ykos3;gr2=Ykos1;}

else {gr1=Ykos1;gr2=Ykos3;}

}

stat1=(Ykos3-Ykos1)*(Zc-Zkos1)-(Yc-Ykos1)*(Zkos3-Zkos1);

stat2=(Zkos3-Zkos1)*(Xc-Xkos1)-(Xkos3-Xkos1)*(Zc-Zkos1);

stat3=(Xkos3-Xkos1)*(Yc-Ykos1)-(Xc-Xkos1)*(Ykos3-Ykos1);

stat4=-(Xkos1*stat1+Ykos1*stat2+Zkos1*stat3);

}

if (i==1)

{

if (abs(Xkos2-Xkos1)>abs(Ykos2-Ykos1))

{

if (Ykos1>Ykos2) {pol2=Ykos1;pol1=Ykos2;}

else {pol2=Ykos2;pol1=Ykos1;}

smen=1;

if (Xkos1>Xkos2) {gr1=Xkos2;gr2=Xkos1;}

else {gr1=Xkos1;gr2=Xkos2;}

}

else

{ if (Xkos1>Xkos2) {pol2=Xkos1;pol1=Xkos2;}

else {pol2=Xkos2;pol1=Xkos1;}

smen=2;

if (Ykos1>Ykos2) {gr1=Ykos2;gr2=Ykos1;}

else {gr1=Ykos1;gr2=Ykos2;}

}

stat1=(Ykos2-Ykos1)*(Zc-Zkos1)-(Yc-Ykos1)*(Zkos2-Zkos1);

stat2=(Zkos2-Zkos1)*(Xc-Xkos1)-(Xkos2-Xkos1)*(Zc-Zkos1);

stat3=(Xkos2-Xkos1)*(Yc-Ykos1)-(Xc-Xkos1)*(Ykos2-Ykos1);

stat4=-(Xkos1*stat1+Ykos1*stat2+Zkos1*stat3);

}

if (i==2)

{

if (abs(Xkos3-Xkos2)>abs(Ykos3-Ykos2))

{

if (Ykos2>Ykos3) {pol2=Ykos2;pol1=Ykos3;}

else {pol2=Ykos3;pol1=Ykos2;}

smen=1;

if (Xkos2>Xkos3) {gr1=Xkos3;gr2=Xkos2;}

else {gr1=Xkos2;gr2=Xkos3;}

}

else

{ if (Xkos2>Xkos3) {pol2=Xkos2;pol1=Xkos3;}

else {pol2=Xkos3;pol1=Xkos2;}

smen=2;

if (Ykos2>Ykos3) {gr1=Ykos3;gr2=Ykos2;}

else {gr1=Ykos2;gr2=Ykos3;}

}

stat1=(Ykos3-Ykos2)*(Zc-Zkos2)-(Yc-Ykos2)*(Zkos3-Zkos2);

stat2=(Zkos3-Zkos2)*(Xc-Xkos2)-(Xkos3-Xkos2)*(Zc-Zkos2);

stat3=(Xkos3-Xkos2)*(Yc-Ykos2)-(Xc-Xkos2)*(Ykos3-Ykos2);

stat4=-(Xkos2*stat1+Ykos2*stat2+Zkos2*stat3);

}

mon=0;nt=0;

while (gr1<=gr2)

{ if (smen==1)

{CB=stat3/stat2;

AD=(-stat1*gr1)/stat2-(stat4/stat2);

ADY=(AD-Yc);

at=(CB*CB+1);

bt=(-2)*(ADY*CB+Zc);

ct=(ADY*ADY+Zc*Zc+(gr1-Xc)*(gr1-Xc)-Rc*Rc);

DISC=(bt/2)*(bt/2)-at*ct;

{

if (DISC>=0)

{ setcolor(9);

Zris2=((-bt/2)+sqrt(DISC))/at;

Zris1=((-bt/2)-sqrt(DISC))/at;

Yris1=AD-CB*Zris1;

Yris2=AD-CB*Zris2;

YY[schit]=Yris2;

ZZ[schit]=Zris2;

XX[schit]=gr1;

Rad[schit]=(sqrt((XX[schit]-Xvr)*(XX[schit]-Xvr)+(ZZ[schit]-Zvr)*(ZZ[schit]-Zvr)));

x1=XX[schit]-Xvr;x2=Rad[schit];y1=ZZ[schit]-Zvr;y2=0;

ugol[schit]=acos((x1*x2+y1*y2)/((sqrt(x1*x1+y1*y1)))/(sqrt(x2*x2+y2*y2)))*180/M_PI;

schit++;

// if (Yris2>pol1 && Yris2<pol2)

{if (mon==0) {xp=gr1;yp=Yris2;mon++;}

else {line(xp+40,800-yp,gr1+40,800-Yris2);mon=0;}

circle(gr1+40,800-Yris2,2);

} gr1=gr1+1;

}

}

}

if (smen==2)

{

ABD=(-stat2*gr1)/stat1-stat4/stat1;

AC=stat3/stat1;

ABX=ABD-Xc;

at=(AC*AC+1);

bt=(-2)*(ABX*AC+Zc);

ct=(ABX*ABX+Zc*Zc+(gr1-Yc)*(gr1-Yc)-Rc*Rc);

DISC=(bt/2)*(bt/2)-at*ct;

if (DISC>=0)

{

setcolor(9);

Zris2=((-bt/2)+sqrt(DISC))/at;

Zris1=((-bt/2)-sqrt(DISC))/at;

Xris1=ABD-AC*Zris1;

Xris2=ABD-AC*Zris2;

YY[schit]=gr1;

ZZ[schit]=Zris2;

XX[schit]=Xris2;

Rad[schit]=(sqrt((XX[schit]-Xvr)*(XX[schit]-Xvr)+(ZZ[schit]-Zvr)*(ZZ[schit]-Zvr)));

x1=XX[schit]-Xvr;x2=Rad[schit];y1=ZZ[schit]-Zvr;y2=0;

ugol[schit]=acos((x1*x2+y1*y2)/((sqrt(x1*x1+y1*y1)))/(sqrt(x2*x2+y2*y2)))*180/M_PI;

schit++;

{if (mon==0) {xp=Xris2;yp=gr1;mon++;}

else {line(xp+40,800-yp,40+Xris2,800-gr1);mon=0;}

circle(Xris2+40,800-gr1,2);

} gr1=gr1+1;

} }

}

}

double rk=0.0,pc;

if (Xkos1>rk) {rk=Xkos1;pc=Ykos1;}

if (Xkos1>rk) {rk=Xkos2;pc=Ykos2;}

if (Xkos1>rk) {rk=Xkos3;pc=Ykos3;}

setcolor(15);

setlinestyle(1,0,1);

line(Xc+40,800-Yc,x[1]+40,800-y[1]);

line(Xc+40,800-Yc,x[2]+40,800-y[2]);

line(Xc+40,800-Yc,x[3]+40,800-y[3]);

setlinestyle(0,0,1);

}

void raschet(void)

{ int i,kol=0;

aj=x[2]-x[1];

bj=y[2]-y[1];

cj=z[2]-z[1];

ak=x[3]-x[1];

bk=y[3]-y[1];

ck=z[3]-z[1];

Ris=(r[1]+Rc)*(r[1]+Rc);

Rjs=(r[2]+Rc)*(r[2]+Rc);

Rks=(r[3]+Rc)*(r[3]+Rc);

dj=(0.5*(Ris-Rjs+(aj*aj)+(bj*bj)+(cj*cj)));

dk=(0.5*(Ris-Rks+(ak*ak)+(bk*bk)+(ck*ck)));

A=(aj*bk-ak*bj)*(aj*bk-ak*bj)+(bj*ck-bk*cj)*(bj*ck-bk*cj)+(cj*ak-ck*aj)*(cj*ak-ck*aj);

Bx=(dj*bk-dk*bj)*(aj*bk-ak*bj)+(dj*ck-dk*cj)*(aj*ck-ak*cj);

By=(dj*ck-dk*cj)*(bj*ck-bk*cj)+(dj*ak-dk*aj)*(bj*ak-bk*aj);

Bz=(dj*ak-dk*aj)*(cj*ak-ck*aj)+(dj*bk-dk*bj)*(cj*bk-ck*bj);

Cx=(dj*bk-dk*bj)*(dj*bk-dk*bj)+(dj*ck-dk*cj)*(dj*ck-dk*cj)-Ris*(bj*ck-bk*cj)*(bj*ck-bk*cj);

Cy=(dj*ck-dk*cj)*(dj*ck-dk*cj)+(dj*ak-dk*aj)*(dj*ak-dk*aj)-Ris*(cj*ak-ck*aj)*(cj*ak-ck*aj);

Cz=(dj*ak-dk*aj)*(dj*ak-dk*aj)+(dj*bk-dk*bj)*(dj*bk-dk*bj)-Ris*(aj*bk-ak*bj)*(aj*bk-ak*bj);

if ((Bx*Bx-A*Cx)<0) kol++;

if ((By*By-A*Cy)<0) kol++;

if ((Bz*Bz-A*Cz)<0) kol++;

if (kol!=0) {printf("SPHERA RADIUSA %d NE MOZHET ODNOVREMENNO KASATSJA 3 DANNIH SPHER",Rc);system("PAUSE");exit(1);}

Xc=double(x[1])+(Bx+sqrt((Bx*Bx-A*Cx)))/A;

double dg1,dg2,dg3;

double xc1,yc1,zc1,xc2,yc2,zc2,xc3,yc3,zc3,pc1,pc2,pc3;

int nom;

int j=1;

while (j<1500)

{

Yc=j;

Zc=sqrt((r[1]+Rc)*(r[1]+Rc)-(x[1]-Xc)*(x[1]-Xc)-(y[1]-Yc)*(y[1]-Yc))+z[1];

nom=0;

xc1=(Xc-double(x[1]))*(Xc-double(x[1]));

yc1=(Yc-double(y[1]))*(Yc-double(y[1]));

zc1=(Zc-double(z[1]))*(Zc-double(z[1]));

xc2=(Xc-double(x[2]))*(Xc-double(x[2]));

yc2=(Yc-double(y[2]))*(Yc-double(y[2]));

zc2=(Zc-double(z[2]))*(Zc-double(z[2]));

xc3=(Xc-double(x[3]))*(Xc-double(x[3]));

yc3=(Yc-double(y[3]))*(Yc-double(y[3]));

zc3=(Zc-double(z[3]))*(Zc-double(z[3]));

dg1=sqrt(xc1+yc1+zc1)-double(r[1])-Rc;

dg2=sqrt(xc2+yc2+zc2)-double(r[2])-Rc;

dg3=sqrt(xc3+yc3+zc3)-double(r[3])-Rc;

if (abs(int(dg1))<=1) nom++;

if (abs(int(dg2))<=1) nom++;

if (abs(int(dg3))<=1) nom++;

if (nom==3) {break;}

Zc=z[1]-sqrt((r[1]+Rc)*(r[1]+Rc)-(x[1]-Xc)*(x[1]-Xc)-(y[1]-Yc)*(y[1]-Yc));

nom=0;

xc1=(Xc-double(x[1]))*(Xc-double(x[1]));

yc1=(Yc-double(y[1]))*(Yc-double(y[1]));

zc1=(Zc-double(z[1]))*(Zc-double(z[1]));

xc2=(Xc-double(x[2]))*(Xc-double(x[2]));

yc2=(Yc-double(y[2]))*(Yc-double(y[2]));

zc2=(Zc-double(z[2]))*(Zc-double(z[2]));

xc3=(Xc-double(x[3]))*(Xc-double(x[3]));

yc3=(Yc-double(y[3]))*(Yc-double(y[3]));

zc3=(Zc-double(z[3]))*(Zc-double(z[3]));

dg1=sqrt(xc1+yc1+zc1)-double(r[1])-Rc;

dg2=sqrt(xc2+yc2+zc2)-double(r[2])-Rc;

dg3=sqrt(xc3+yc3+zc3)-double(r[3])-Rc;

if (abs(int(dg1))<=1) nom++;

if (abs(int(dg2))<=1) nom++;

if (abs(int(dg3))<=1) nom++;

if (nom==3) {break;}

j++;

}

R4=(sqrt((Xc-Xvr)*(Xc-Xvr)+(Zc-Zvr)*(Zc-Zvr)));

double x1,x2,y1,y2;

x1=Xc-Xvr;x2=R4;y1=Zc-Zvr;y2=0;

alp4=(x1*x2+y1*y2)/((sqrt(x1*x1+y1*y1)))/(sqrt(x2*x2+y2*y2));

al4=acos(alp4)*180/M_PI;

printf("Xc=%10.10fn",Xc);

printf("Yc=%10.10fn",Yc);

printf("Zc=%10.10fn",Zc);

xc1=Xc-x[1];xc2=Xc-x[2];xc3=Xc-x[3];

yc1=Yc-y[1];yc2=Yc-y[2];yc3=Yc-y[3];

zc1=Zc-z[1];zc2=Zc-z[2];zc3=Zc-z[3];

XYc1=(-xc1*y[1]+yc1*x[1])/yc1;XYc2=(-xc2*y[2]+yc2*x[2])/yc2;XYc3=(-xc3*y[3]+yc3*x[3])/yc3;

ZYc1=(-zc1*y[1]+yc1*z[1])/yc1;ZYc2=(-zc2*y[2]+yc2*z[2])/yc2;ZYc3=(-zc3*y[3]+yc3*z[3])/yc3;

M1=((Rc*Rc)-(Xc*Xc+Yc*Yc+Zc*Zc))/(-2);

M2=((r[1]*r[1])-(x[1]*x[1]+y[1]*y[1]+z[1]*z[1]))/(-2);

M3=((r[2]*r[2])-(x[2]*x[2]+y[2]*y[2]+z[2]*z[2]))/(-2);

M4=((r[3]*r[3])-(x[3]*x[3]+y[3]*y[3]+z[3]*z[3]))/(-2);

Ykos1=(M1-M2-XYc1*Xc+XYc1*x[1]-ZYc1*Zc+ZYc1*z[1])/(xc1*Xc/yc1-xc1*x[1]/yc1+(Yc-y[1])+zc1*Zc/yc1-zc1*z[1]/yc1);

Ykos2=(M1-M3-XYc2*Xc+XYc2*x[2]-ZYc2*Zc+ZYc2*z[2])/(xc2*Xc/yc2-xc2*x[2]/yc2+(Yc-y[2])+zc2*Zc/yc2-zc2*z[2]/yc2);

Ykos3=(M1-M4-XYc3*Xc+XYc3*x[3]-ZYc3*Zc+ZYc3*z[3])/(xc3*Xc/yc3-xc3*x[3]/yc3+(Yc-y[3])+zc3*Zc/yc3-zc3*z[3]/yc3);

Xkos1=Ykos1*xc1/yc1+XYc1;Xkos2=Ykos2*xc2/yc2+XYc2;Xkos3=Ykos3*xc3/yc3+XYc3;

Zkos1=Ykos1*zc1/yc1+ZYc1;Zkos2=Ykos2*zc2/yc2+ZYc2;Zkos3=Ykos3*zc3/yc3+ZYc3;

}

void osi(void)

{

int i,s=40;

char st[14];

setcolor(15);

line(40,40,40,800);

line(40,800,1000,800);

for(i=60;i<1000;i=i+20)

{line(i,798,i,802);}

for(i=80;i<1000;i=i+40)

{ sprintf(st,"%d",s);

outtextxy(i-7,810,st);

s=s+40;}

line(1000,800,985,795);

line(1000,800,985,805);

for(i=60;i<800;i=i+20)

{line(38,i,42,i);}

line(40,40,35,55);

line(40,40,45,55);

s=40;

for(i=760;i>40;i=i-40)

{ sprintf(st,"%d",s);

outtextxy(10,i-7,st);

s=s+40;

}

outtextxy(25,790,"0");

}

void menu()

{

int c=-1,i;

while(c!=ESC)

{

c=getch();

if (c==DOWN)

{ int re=0;

floodfill(10,10,3);

al1=al1+5;al2=al2+5;al3=al3+5;al4=al4+5;

z[1]=Zvr+R1*sin(al1*M_PI/180);

x[1]=Xvr+R1*cos(al1*M_PI/180);

z[2]=Zvr+R2*sin(al2*M_PI/180);

x[2]=Xvr+R2*cos(al2*M_PI/180);

z[3]=Zvr+R3*sin(al3*M_PI/180);

x[3]=Xvr+R3*cos(al3*M_PI/180);

Zc=Zvr+R4*sin(al4*M_PI/180);

Xc=Xvr+R4*cos(al4*M_PI/180);

raz=0;osi();risuem();

setcolor(9);

for(i=0;i<schit;i++)

{

ugol[i]=ugol[i]+5;

XX[i]=Xvr+Rad[i]*cos(ugol[i]*M_PI/180);

circle(XX[i]+40,800-YY[i],2);

}

setcolor(15);

setlinestyle(1,0,1);

line(Xc+40,800-Yc,x[1]+40,800-y[1]);

line(Xc+40,800-Yc,x[2]+40,800-y[2]);

line(Xc+40,800-Yc,x[3]+40,800-y[3]);

setlinestyle(0,0,1);

}

if (c==UP)

{ floodfill(10,10,3);

al1=al1-5;al2=al2-5;al3=al3-5;al4=al4-5;

z[1]=Zvr+R1*sin(al1*M_PI/180);

x[1]=Xvr+R1*cos(al1*M_PI/180);

z[2]=Zvr+R2*sin(al2*M_PI/180);

x[2]=Xvr+R2*cos(al2*M_PI/180);

z[3]=Zvr+R3*sin(al3*M_PI/180);

x[3]=Xvr+R3*cos(al3*M_PI/180);

Zc=Zvr+R4*sin(al4*M_PI/180);

Xc=Xvr+R4*cos(al4*M_PI/180);

raz=0;osi();risuem();

setcolor(9);

for(i=0;i<schit;i++)

{

ugol[i]=ugol[i]-5;

XX[i]=Xvr+Rad[i]*cos(ugol[i]*M_PI/180);

circle(XX[i]+40,800-YY[i],2);

}

setcolor(15);

setlinestyle(1,0,1);

line(Xc+40,800-Yc,x[1]+40,800-y[1]);

line(Xc+40,800-Yc,x[2]+40,800-y[2]);

line(Xc+40,800-Yc,x[3]+40,800-y[3]);

setlinestyle(0,0,1);

} }}

int main()

{

dano();

raschet();

osi();

risuem();

sechen();

menu();

getch();

return 0;

}


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно