Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Решение задач линейного программирования различными методами

Тип Реферат
Предмет Информатика
Просмотров
434
Размер файла
132 б
Поделиться

Ознакомительный фрагмент работы:

Решение задач линейного программирования различными методами

Контрольная работа

Задание 1

Решение задач линейного программирования графическим методом

Цель задания: приобрести практические навыки решения задач линейного программирования графическим методом.

Индивидуальное задание

Найти максимум и минимум линейной формы графическим методом по исходным данным задачи ЛП (таблица 1).

Таблица 1

Номер вариантаЦелевая функцияОграничения задачи линейного программирования
6

Решение задачи

Построим область L допустимых решений. Заменим в каждом неравенстве задачи знак неравенства на знак равенства. Получим уравнения прямых:

x1+4x2=8, 2x1-x2=4, x1+x2­=1,x1=0,x2=0.

Область L определяется как общая часть полуплоскостей, соответствующих неравенствам ограничений (рисунок 1).



Рисунок 1. Графическое решение задачи ЛП

В данной задаче она составляет многоугольник ABCD. Для нахождения экстремума функции Z=-2x1+4x2, строим разрешающую прямую, приравнивая линейную форму нулю:Z=0. Строим градиент целевой функции C(2;4).

Минимальное значение функция принимает в точке D(4,5;0,7) , а максимальное в точке B.

Анализ решения задачи линейного программирования

В результате решения задачи линейного программирования были получены минимум и максимум рассматриваемой функции, вследствие того, что область ограничений представляет собой замкнутый многоугольник, если бы фигура области ограничений была не замкнута, функция могла бы не иметь одного или обоих экстремумов в заданной области.


Задание 2

Решение задач ЛП симплексным методом с использованием симплекс-таблиц

Цель задания: закрепить теоретические сведения и приобрести практические навыки решения задач ЛП симплекс-методом.

Индивидуальное задание

Найти максимум линейной формы

Z=c1x1+c2x2

при условиях:

Данные представлены в таблице 2.

Номер вариантаA11A12A21A22A31A32B1B2B3C1C2
641368743747674

Приведем задачу ЛП к каноническому виду:

-Z’= -Z = -7x1 -4x2

при ограничениях

x3, x4, x5 — дополнительные переменные.

Во втором уравнении дополнительная переменная введена с коэффициентом -1 и уравнение умножено на -1.

Постановка задачи в виде матрицы системы ограничений

Решение задачи ЛП с составленными симплекс-таблицами

Единичные векторы A3, A4, A5образуют базис трехмерного пространства (m=3). Решать эту задачу алгоритмом симплекс-метода можно, поскольку переменные x3, x4, x5 входят с коэффициентом +1 соответственно в первое, второе и третье ограничения. Таким образом, x3, x4, x5 – базисные переменные, а остальные небазисные. Полагая небазисные переменные в ограничениях равными нулю, получим исходное допустимое базисное решение:

X0=(0,0,43,-74,76).

Заполняем исходную симплекс-таблицу (таблица 2)

Таблица 2. Нулевая симплекс-таблица

iБxСбA0-7-4000T
A1A2A3A4A5
1A304341100
2A4074-3-6010
3A5076-87001
4074000

Так как среди разностей есть положительные, то X0 не является оптимальным решением. Строим новое базисное решение.

.

Выводим из базиса вектор A3,так как

.

Разрешающий элемент таблицы x12выделим кругом, а разрешающий столбец и строку стрелками.


Таблица 3. Первая симплекс-таблица

iБxCбA0-7-4000T
A1A2A3A4A5
1A1-7100
2A40010
3A5016209201
4000

Так как среди разностей есть положительные, то оптимальное решение не получено. Строим новое базисное решение.

.

Выводим из базиса вектор A4,так как

.

Таблица 4. Втораясимплекс-таблица

iБxCбA0-7-4000T
A1A2A3A4A5
1A2-44341400
2A4073621010
3A50-225-360-3401
4-9000

Так как все разности во второй таблице (таблица 4) неположительны: , т получено оптимальное решение:

min(-Z)= -225.

Тогда max(Z)= -min(-Z)= 225

Анализ оптимального плана.

Использование переменной x1 нецелесообразно.

Задание 3

Моделирование и решение задач ЛП на ЭВМ

Цель задания: приобрести практические навыки моделирования задач ЛП и их решения симплекс-методом с использованием прикладной программы SIMC.

Индивидуальное задание

Предприятие может работать по 5-ти технологическим процессам, причем кол-во единиц выпускаемой продукции по разным ТП за ед. времени соответственно равны 300, 260, 320, 400, 450 шт. затраты производственных факторов в гривнах при работе по разным ТП в течение 1 ед. времени и располагаемые ресурсы этих факторов в табл.5.

Найти программу максимального выпуска продукции.

Таблица 5.

факторыСпособ производства

Ресурсы,

грн

12345
Сырье12151012111300
Эл.энергия0,20,10,20,250,330
Зарплата34542400
Накладные расходы65464800

Математическая интерпретация задачи

Исходные массивы, записанные в виде, пригодном для решения задачи по программе SIMC

5

4

12.000 15.000 10.000 12.000 11.000 < 1300.000

0.200 0.100 0.200 0.250 0.300 < 30.000

3.000 4.000 5.000 4.000 2.000 < 400.000

6.000 5.000 4.000 6.000 4.000 < 800.000

300.000 260.000 320.000 400.000 450.000

Распечатка ЭВМ в результатом решения

ИТЕРАЦИЯ N=1 РЕШЕНИЕ НАЙДЕНО !!!

ТЕКУЩАЯ СИМПЛЕКС-ТАБЛИЦА ЗАДАЧА НЕ ВЫРОЖДЕНА

Бx Cб Po 1 2 3 4 5

6 0.000 1300.000 12.000 15.000 10.000 12.000 11.000

7 0.000 30.000 0.200 0.100 0.200 0.250 0.300

8 0.000 400.000 3.000 4.000 5.000 4.000 2.000

9 0.000 800.000 6.000 5.000 4.000 6.000 4.000

0.000 300.000 260.000 320.000 400.000 450.000

КОД ОШИБКИ=0

ОПТИМАЛЬНОЕ ЗНАЧЕНИЕ БАЗИС-ВЕКТОРА И РЕШЕНИЕ

ОПТИМУМ ЦЕЛЕВОЙ ФУНКЦИИ = 0.0000

ИТЕРАЦИЯ N=1 ПРОДОЛЖЕНИЕ РЕШЕНИЯ ТЕКУЩАЯ СИМПЛЕКС-ТАБЛИЦА ЗАДАЧА НЕ ВЫРОЖДЕНА

Бx Cб Po 1 2 3 4 5

6 0.000 1300.000 12.000 15.000 10.000 12.000 11.000

7 0.000 30.000 0.200 0.100 0.200 0.250 0.300

8 0.000 400.000 3.000 4.000 5.000 4.000 2.000

9 0.000 800.000 6.000 5.000 4.000 6.000 4.000

0.000 -300.000 -260.000 -320.000 -400.000 -450.000

В БАЗИС ВВОДИТСЯ 5 СТОЛБЕЦ

ИЗ БАЗИСА ВЫВОДИТСЯ 7 СТОЛБЕЦ

ИТЕРАЦИЯ N=2 ПРОДОЛЖЕНИЕ РЕШЕНИЯ ТЕКУЩАЯ СИМПЛЕКС-ТАБЛИЦА ЗАДАЧА НЕ ВЫРОЖДЕНА

Бx Cб Po 1 2 3 4 7

6 0.000 200.000 4.667 11.333 2.667 2.833 -36.667

5 450.000 100.000 0.667 0.333 0.667 0.833 3.333

8 0.000 200.000 1.667 3.333 3.667 2.333 -6.667

9 0.000 400.000 3.333 3.667 1.333 2.667 -13.333

45000.000 -0.000 -110.000 -20.000 -25.000 1500.000

В БАЗИС ВВОДИТСЯ 2 СТОЛБЕЦ

ИЗ БАЗИСА ВЫВОДИТСЯ 6 СТОЛБЕЦ

ИТЕРАЦИЯ N=3 ПРОДОЛЖЕНИЕ РЕШЕНИЯ ТЕКУЩАЯ СИМПЛЕКС-ТАБЛИЦА ЗАДАЧА НЕ ВЫРОЖДЕНА

Бx Cб Po 1 3 4 6 7

2 260.000 17.647 0.412 0.235 0.250 0.088 -3.235

5 450.000 94.118 0.529 0.588 0.750 -0.029 4.412

8 0.000 141.176 0.294 2.882 1.500 -0.294 4.118

9 0.000 335.294 1.824 0.471 1.750 -0.324 -1.471

46941.176 45.294 5.882 2.500 9.706 1144.118

КОД ОШИБКИ=0

ОПТИМАЛЬНОЕ ЗНАЧЕНИЕ БАЗИС-ВЕКТОРА И РЕШЕНИЕ

X2=17.6471

X5=94.1176

ОПТИМУМ ЦЕЛЕВОЙ ФУНКЦИИ = 46941.1765

РЕШЕНИЕ НАЙДЕНО !!!

Оптимальный план. Экономическая интерпретация оптимального решения. В соответствии с полученным результатом выпуск продукции по 1,3 и 4 технологическим процессам нецелесообразен.

Задание 4

Моделирование транспортных задач и их решение методом потенциалов

Цель задания: приобрести практические навыки моделирования и решения транспортной задачи ЛП методом потенциалов.

Индивидуальное задание

Составить оптимальное распределение трех видов механизмов на четырех участках работ, обеспечивающих минимальную себестоимость выполнения всей работы. Количество единиц механизмов, потребности участков в механизмах и себестоимость выполнения единицы работы каждым механизмом на соответствующем участке приведены в таблице 6.

Таблица 6. 06 вариант транспортной задачи

Вид механизмаСебестоимость выполнения единицы работы механизма ,гр.Количество единиц ai механизмов
B1B2B3B4
A11143115
A2689710
A3484235
Потребности bj участков в механизмах2520105

Математическая формулировка транспортной задачи

Пусть xij – количество единиц работы, выполненной механизмом вида ai, на участке работы bj.Требуется определить план распределения механизмов, минимизирующий себестоимость выполнения всей работы:

при ограничениях:

1) ; - все механизмы должны быть задействованы;

2); - все участки должны быть загружены;

3) ; - количество единиц работы не может быть отрицательным

Условие разрешимости задачи выполняется:

25+20+10+5=15+10+35; 60=60.

Исходный опорный план, составленный по методу северо-западного угла

Таблица 7

Iai
B1B2B3B4
A1

11

4

15

3

1

15
A2

6

5

8

5

9

7

10
A3

4

20

8

4

10

2

5

35
bj2520105

Решение транспортной задачи методом потенциалов

Итак, видно что в число занятых клеток следует ввести клетку (2,1).

Получим новый улучшенный план – таблица 8.


Таблица 8

Iai
B1B2B3B4
A1

11

4

15

3

1

15
A2

6

5

8

5

9

7

10
A3

4

20

8

4

10

5

5

35
bj2520105

Введём в число занятых клетку (1,4) . Получим новый улучшенный план – Таблица 9.

Таблица 9

Iai
B1B2B3B4
A1

11

4

10

3

5

1

15
A2

6

8

10

9

7

10
A3

4

25

8

4

5

2

5

35
bj2520105

Так как, - то данный план является оптимальным и значение себестоимости по данному плану.

x12=15; x­21=5; x22=5; x­31=20;x33=10; x­34=5.

Z=15*4+5*6+5*8+20*4+10*4+5*2=260.

Анализ оптимального плана

Данный оптимальный план показывает, как нужно распределить механизмы по участкам для получения минимальной себестоимости выполненной работы.

Задание 5

Решение транспортной задачи на ЭВМ

Цель задания: приобрести практические навыки решения транспортной задачи на ЭВМ с использованием прикладной программы TRAN2.

Индивидуальное задание:

Составить оптимальное распределение трех видов механизмов на четырех участках работ, обеспечивающих минимальную себестоимость выполнения всей работы. Количество единиц механизмов, потребности участков в механизмах и себестоимость выполнения единицы работы каждым механизмом на соответствующем участке приведены в таблице 6.

Таблица 10. 06 вариант транспортной задачи

Вид механизмаСебестоимость выполнения единицы работы механизма ,гр.Количество единиц ai механизмов
B1B2B3B4
A11143115
A2689710
A3484235
Потребности bj участков в механизмах2520105

Исходные массивы для решения транспортной задачи по программе TRAN2

Распечатка с ЭВМ с результатом решения

Оптимальный план транспортной задачи

x12=15; x­21=5; x22=5; x31=20;x33=10; x­34=5.

Z=15*4+5*6+5*8+20*4+10*4+5*2=260.

Анализ результатов и выводы

Решение транспортной задачи на ЭВМ автоматизирует работу по вычислению решений транспортных задач и на тестируемом входном условие получается за 3 итерации, как и при ручном вычислении.

Задание 6

Решение многоэтапных задач методом динамического программирования

Цель задания: приобрести практические навыки решения многоэтапных задач методом динамического программирования.

Индивидуальное задание.

В таблице 11 приведены значения gi(x) возможного прироста продукции на четырех предприятиях в зависимости от выделенной на реконструкцию и модернизацию производства суммы x.

Распределить между предприятиями имеющиеся 100 тыс. гр., чтобы общий прирост f4(100) выпуска продукции был максимальным. Для упрощения вычислений значения xпринимать кратными 20 тыс. гр.

Таблица 11

ПредприятиеПрирост выпуска продукции, тыс. гр.Средства c, тыс. гр.Номер варианта
20406080100
1G1(x)11214054626
2G2(x)1320424561
3G3(x)1222345560
4G4(x)1027335769

Функциональное уравнение Беллмана для рассматриваемой задачи

f1(x)=max[g1(x)]=g1(x) – для первого предприятия;

- для остальных предприятий.

Решение задачи оптимального распределения средств между предприятиями методом динамического программирования

Таблица 12

Средства с, тыс. гр.Предприятие
1234
G1(x)G2(x)G3(x)G4(x)
2011131210
4021202227
6040423433
8054455557
10062626069

Таблица 13

X1*(c)20406080100
F1(c)1121405462

Таблица 14

x

С

020406080100F2(c)X2*(c)
200+1312+0130
400+2412+1322+02520
600+4212+2422+1334+0420
800+4512+4222+2434+1355+05580
1000+6712+4522+4234+2455+360+06880

Таблица 15

x

С

020406080100F3(c)X3*(c)
200+1310+0130
400+2910+1327+02740
600+4210+2527+1333+0420
800+5510+4227+2533+1357+05780
1000+6810+5527+4233+2552+1369+06940

Таблица 16

СX1*(c)F1(c)X2*(c)F2(c)X3*(c)F3(c)X4*(c)F4(c)
000000000
2020112013013013
404021202420254027
6060406042042042
808054804580558057
10010062206780684069

Итак, из таблицы 16 видно, что наибольший прирост выпуска продукции, который могут дать четыре предприятия при распределении между ними 100 тыс. грн. составляет 69 тыс. грн. При этом четвертому предприятию нужно выделить 40 тыс. грн., а остальным 60 тыс. грн.

Оптимальное распределение оставшихся 60 тыс. грн. между 3-мя предприятиями обеспечит прирост продукции на сумму 42 тыс. грн., при условии, что 3-му предприятию не будут выделены средства. Остается 60 тыс. грн., которые надо распределить между 2-мя предприятиями. Выделив всю оставшуюся сумму (60 тыс. грн.) второму, прибыль составит 42 тыс. грн. первому предприятию средств не остается.

Максимальный прирост выпуска продукции на четырех предприятиях при распределении между ними 100 тыс. грн. составляет 69 тыс. грн. и будет получен, если первому предприятию не выделять средств, второму — 60 тыс. грн., третьему не выделять, а четвертому — 40 тыс. грн.

Это решение можно записать в виде:

X*=(0,0,60,40); f*=f4(100)=69 тыс. гр.


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно