Всё сдал! - помощь студентам онлайн Всё сдал! - помощь студентам онлайн

Реальная база готовых
студенческих работ

Узнайте стоимость индивидуальной работы!

Вы нашли то, что искали?

Вы нашли то, что искали?

Да, спасибо!

0%

Нет, пока не нашел

0%

Узнайте стоимость индивидуальной работы

это быстро и бесплатно

Получите скидку

Оформите заказ сейчас и получите скидку 100 руб.!


Наближені методи розв’язку нелінійних рівнянь

Тип Реферат
Предмет Информатика и программирование
Просмотров
1073
Размер файла
86 б
Поделиться

Ознакомительный фрагмент работы:

Наближені методи розв’язку нелінійних рівнянь

Міністерство освіти та науки України

Вінницький національний технічний університет

Інститут АЕКСУ

Кафедра АІВТ

Курсова робота

з дисципліни

Обчислювальні методи та застосування ЕОМ

Вінниця-2006


Анотація

В цій курсовій роботі розглянуто наближені методи розв’язку нелінійних рівнянь, для вказаних методів складено блок-схеми та написано програму, за якою розв’язується задане рівняння. Проведено аналіз як самого рівняння і методів його розв’язання так і результатів обрахунку.

В наш час, коли надзвичайно швидкими темпами розвивається наука і техніка, людина освоює все нові і нові галузі, все більше проникає як в надра землі так і за її межі, з’являється багато нових і досить складних задач, рішення яких потребує нових методів і нових підходів. Зокрема надзвичайно велика кількість задач електроніки, електротехніки, механіки, кібернетики та ряду інших галузей науки вимагають від вчених інженерів вирішення досить складних математичних задач які вимагають певного аналізу та нестандартного підходу до вирішення.

З’являються задачі які не можна розв’язати за допомогою класичної математики і отримати точний розв’язок, і в загалі досить часто про отримання точного розв’язку не доводиться говорити, оскільки отримати його при існуючих умовах просто неможливо. Тож ставляться задачі отримати приблизні розв’язки, але якомога близькі до точних. Тому в таких задачах використовуються різні наближені методи рішення тієї чи іншої задачі.


КОРОТКІ ТЕОРЕТИЧНІ ВІДОМОСТІ

В залежності від конкретного виду та типу задачі використовуються різні методи та специфічні підходи до вирішення цієї задачі. Зокрема якщо мова йде про вирішення нелінійних рівнянь, то існує ряд методів для рішення такої задачі. Найбільшого поширення отримали метод половинного ділення, метод хорд, метод Ньютона та метод простої ітерації.

Розглянемо суть цих методів.

Метод половинного ділення: в цьому методі спочатку обчислюється значення функції в точках що розташовані через рівні інтервали на осі х. Коли f(xn) if(xn+1) мають протилежні знаки, знаходять , f(xcp). Якщо знак f(xcp) збігається зі знаком f(xn), то надалі замість хn використовується хср . Якщо ж f(xcp) має знак, протилежний f(xn), тобто збігається зі знаком f(xn+1), то на хср замінюється xn+1 . За умову припинення ітераційного процесу доцільно брати умову | xn+1– xn| <e, де e - задана похибка. Похибка розв’язку через n ітерацій знаходиться в межах Δ<

Метод хибного положення (хорд) полягає в тому, що визначаються значення функції в точках, що розташовані на осі через рівні інтервали. Це робиться поки кінці інтервалів xn+1 , хnне будуть мати різні знаки. Пряма, що проведена через ці дві точки, перетинає вісь у точці . Після цього визначають f(xn+1) і порівнюють його з f(xn). Надалі користуються xn+1 замість того значення, з яким воно збіглося за знаком. Якщо | xn+1 – xn| <e, то вся процедура повторюється спочатку.

В цій курсовій роботі розглядаються два методи розв’язку нелінійних рівнянь – це метод Ньютона та простої ітерації тому розглянемо їх більш детально.

Суть цих методів досить схожа але все ж є деякі відмінності.

Метод Ньютона полягає в побудові дотичної до графіка функції в обраній точці. Наступне наближення знаходиться як точка перетину дотичної з віссю ОХ. В основі цього методу лежить розкладання функції в ряд Тейлора: . Члени що містять h у другому і більших степенях відкидаються і врезультаті отримується наближена формула для оцінки хn+1: Хn+1=Xn– , але оскільки цей метод є наближеним, то логічно буде якщо для нього задавати певну похибку і тоді наближене значення кореня буде визначатися з виконання наступної умови: < Δ, де дельта певна задана похибка. Швидкість збіжності цього алгоритму значною мірою залежить від вірного вибору початкової точки. Коли в процесі обчислень кут нахилу дотичної f ’(x)перетворюється на нуль, застосування цього методу ускладнюється. Можна також показати, що у випадку дуже великих значень f ’’(x) чи кратних коренів метод Ньютона стає неефективним.

Початкове наближення слід вибирати з умови: .

Наступний метод це метод простої ітерації. Цей метод дуже схожий до попереднього, але його можна використовувати лише якщо доведена збіжність ітераційного алгоритму. В цьому методі процес розв’язання потрібно починати з пошуку інтервалу збіжності. Умовою збіжності є те що максимальне значення І-ї похідної правої частини рівняння Х=g(x) (1)(до такого вигляду потрібно привести вихідне рівняння f(x)=0 ) повинна бути менша за 1. Якщо умова не виконується, то алгоритм не збіжний. Коли в інтервалі збіжності немає коренів, треба застосовувати інші методи або приходити до рівняння (1) через інші способи. Грубо оцінити похибку для обох методів можна так: Δде М2 – найбільше за модулем значення другої похідної на інтервалі [xn, xn+1]. Похибка ж методу на n– ій ітерації обчислюється так: Δ<.

Аналіз заданого рівняння

В цій роботі необхідно розв’язати нелінійне рівняння 5-го порядку яке відповідно матиме п’ять коренів. Для того щоб розв’язати це рівняння заданими методами, а саме ньютона і простої ітерації, необхідно визначити початкове приблизне наближення, це можна зробити за допомогою графіка цього рівняння( рисунок 2.1 ), побудувавши його за допомогою математичного пакета Mathcad.

рисунок 2.1

Для того щоб точніше визначити значення початкового наближення необхідно збільшити цей графік (рисунок 2.2)

Рисунок 2.2

і тепер з цього графіка видно, що значення початкового наближення потрібно брати приблизно 0.08-0.1 і дійсно ці значення задовольняють необхідну умову оскільки при значенні х0=0.1 (f’’(x0))2=16,7, a добуток f’(x0) f(x0)=-3,8 , що є меншим за значення другої похідної піднесеної до квадрату.

Для знаходження комплексних коренів нелінійного рівняння окрім звичайних методів, які аналогічні тим, що використовуються для знаходження дійсних коренів, існує низка спеціальних методів, що дозволяють оцінювати комплексні корені проводячи обчислення з дійсними числами. Більшість цих методів базується на перетворені початкового нелінійного рівняння до добутку квадратичних співмножників типу: , де piq – коефіцієнти, проміжною формою для здійснення такого перетворення є рівняння у вигляді:

.

Тому використавши цей метод і записавши наступну систему рівнянь:


знайдемо з неї приблизні значення комплексних коренів яких має бути чотири. Отже одержано дві пари таких значень: -0,88+ 1,8і;1,35+ 1,34і;

Алгоритми методів

Алгоритм розв’язку нелінійного рівняння методом Ньютона за допомогою ЕОМ є досить простим і полягає в тому, що спочатку задається дане вихідне рівняння, його похідна, а також допустима похибка. Потім використовуючи вищеописану ітераційну формулу знаходять ряд значень х

n+1=Xn-,

де хn+1 – значення х на наступній ітерації, а хn – значення х на попередній ітерації) і повторюємо цю операцію до тих пір, поки не виконається умова < Δ, тобто різниця значень наступної ітерації і попередньої менше за задану похибку.

Алгоритм розв’язку цього ж рівняння за методом простої ітерації полягає в тому, що спочатку вихідне рівняння потрібно привести до вигляду x=g(x), тобто виразити х з рівняння, а потім використовуючи формулу x1=g(x0), де відповідно х1 – значення х на наступній ітерації, а х0 – значення х на попередній ітерації. Знаходимо також ряд х до тих пір, поки не виконається умова < Δ, де Δ - задана допустима похибка.

Блок схеми методів наведені в додатку А.

Вибір інструментальних засобів

Для вирішення цієї задачі було обрано середовище програмування С, так як воно має ряд вагомих переваг перед іншими середовищами і мовами програмування. Зокрема такими перевагами є те, що:

- не вимагає великих затрат як апаратної частини комп’ютера так і програмної.

- Дозволяє досить просто реалізовувати поставлені задачі

- Є дуже візуальним і наглядним що робить його зручним інструментом в користуванні.

- Ця мова є досить гнучка і дозволяє використовувати технології об’єктно-орієнтованого програмування.

Вхідні та вихідні дані

Вхідними даними для програми є :

1)Для методу Ньютона: початкове рівняння; похідна від нього; початкове

наближення (х0) і допустима, задана за умовою

задачі похибка.

2)для методу простої ітерації: початкове рівняння, приведене до вигляду

x=g(x); початкове наближення і допустима

похибка.

Вихідними даними для обох методів є значення х, яке задовольняє умову< Δ, де Δ – задана за умовою похибка.


Структура програми

Програма розділена на чотири частини такі як:

1) блок опису вхідних та вихідних даних;

2) введення початкових даних;

3) виклик підпрограм для розв’язок задачі різними методами (в даному випадку методом Ньютона та методом простої ітерації);

4) виведення результатів;

інструкція користувачеві

Для запуску програми необхідно запустити файл з назвою “метод Ньютона та простої ітерації ” після чого на вашому екрані відкриється вікно програми (рисунок 7.1).

Рисунок 7.1

Необхідно слідувати вказівкам які з’явились у робочому вікні програми, а саме спочатку ввести допустиму похибку – dпотім – початкове наближення – х0 після чого потрібно обрати метод (Ньютона чи простої ітерації) яким ви бажаєте розв’язати дане рівняння, тобто згідно інструкції натисніть 1 для того щоб розв’язати рівняння методом Ньютона або 2 – для методу простої ітерації, потім натисніть кнопку Enter і ви побачите результат. Наприклад: х=0,0681529 (рисунок 1.). після того як ви отримали результат якимось одним методом ви також відразу можете отримати його і іншим відповідно вибравши 1 чи 2 для методу який вас цікавить.

Аналіз результатів розрахунку

Отже після проведення розрахунку по знаходженню коренів нелінійного рівняння за методами Ньютона та простої ітерації отримано наступні результати: рівняння має 5 коренів, а саме один дійсний і чотири комплексні: хдійсне.Нютона=0,0681529, хкомпл.1,2= -0,9+ 1,8і; хкомпл.3,4 = -1,4+ 1,34і;хдійс.пр.ітерації=0,0681396. Порівнявши отримані результати з наступними результатами

,

що отримані за допомогою автоматизованого математичного пакету Mathcad, можна зробити висновок що корені рівняння розраховані за допомогою чисельних методів є досить таки точними і похибка складає не більше 0.01. за отриманими результатами також можна зробити висновок щодо швидкодії кожного з методів, а саме при однакових початкових умовах метод простої ітерації працює дещо швидше, ніж метод Ньютона, але точніший результат дає метод Ньютона.

Ця курсова робота була присвячена розв’язанню нелінійних рівнянь методами Ньютона та простої ітерації. В результаті роботи було досліджено існуючі методи для розв’язання таких рівнянь, а більш детально розглянуті вищезгадані два методи, а саме Ньютона та простої ітерації. Для цих методів було складено блок-схему, а також написано програму. В результаті роботи за допомогою складеної програми було отримано певні корені заданого рівняння і порівняно їх з значеннями коренів цього ж рівняння, але розв’язаного за допомогою спеціалізованого математичного програмного пакету Mathcad.


Література

1. Квєтний Р. Н. Методи комп’ютерних обчислень. – Навчальний посібник. – Вінниця: ВДТУ, 2001.

2. Вержбицький В. М. Основы численных методов, – М.: Высшая школа, 2002.


Додаток А

(Лістинг програми)

#include <iostream.h>

#include <stdlib.h>

#include <math.h>

#include <conio.h>

int main()

{int x,i,j;

float a1,a2,a3,d,x0,x1;

cout<<"enter the delta and first approximation"<<endl;

cout<<"d= ";

cin>>d;

cout<<endl;

cout<<"x0= ";

cin>>x0;

cout<<endl;

cout<<"chose one of the pointsn for Nuton-1 for Iteraciy-2 to quite-0"<<endl;

cout<<endl;

while (x!=0)

{cin>>x;

switch (x)

{case 1:

x1=x0-((pow(x0,5)-pow(x0,4)+3*pow(x0,3)-5*pow(x0,2)+15*x0-1)/ /(5*pow(x0,4)-4*pow(x0,3)+9*pow(x0,2)-10*x0+15));

while(fabs(x1-x0)>d)

{

x0=x1;

x1=x0-((pow(x0,5)-pow(x0,4)+3*pow(x0,3)-5*pow(x0,2)+15*x0-1)/(5*pow(x0,4)-4*pow(x0,3)+9*pow(x0,2)-10*x0+15));

}

cout<<"x="<<x1<<endl ;

break;

cout<<"chose one of the pointsn for Nuton-1 for Iteraciy-2 to quite-0"<<endl;

case 2:

x1=(1-pow(x0,5)+pow(x0,4)-3*pow(x0,3)+5*pow(x0,2))/15;

while(fabs(x1-x0)>d)

{

x0=x1;

x1=(1-pow(x0,5)+pow(x0,4)-3*pow(x0,3)+5*pow(x0,2))/15;

}

cout<<"x="<<x1<<endl;

break; }

}

}


Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Гарантируем возврат

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

1 000 +
Новых работ ежедневно
computer

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar
Математика
История
Экономика
icon
159599
рейтинг
icon
3275
работ сдано
icon
1404
отзывов
avatar
Математика
Физика
История
icon
156450
рейтинг
icon
6068
работ сдано
icon
2737
отзывов
avatar
Химия
Экономика
Биология
icon
105734
рейтинг
icon
2110
работ сдано
icon
1318
отзывов
avatar
Высшая математика
Информатика
Геодезия
icon
62710
рейтинг
icon
1046
работ сдано
icon
598
отзывов
Отзывы студентов о нашей работе
63 457 оценок star star star star star
среднее 4.9 из 5
Тгу им. Г. Р. Державина
Реферат сделан досрочно, преподавателю понравилось, я тоже в восторге. Спасибо Татьяне за ...
star star star star star
РЭУ им.Плеханово
Альберт хороший исполнитель, сделал реферат очень быстро, вечером заказала, утром уже все ...
star star star star star
ФЭК
Маринаааа, спасибо вам огромное! Вы профессионал своего дела! Рекомендую всем ✌🏽😎
star star star star star

Последние размещённые задания

Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Подогнать готовую курсовую под СТО

Курсовая, не знаю

Срок сдачи к 7 дек.

только что
только что

Выполнить задания

Другое, Товароведение

Срок сдачи к 6 дек.

1 минуту назад

Архитектура и организация конфигурации памяти вычислительной системы

Лабораторная, Архитектура средств вычислительной техники

Срок сдачи к 12 дек.

1 минуту назад

Организации профилактики травматизма в спортивных секциях в общеобразовательной школе

Курсовая, профилактики травматизма, медицина

Срок сдачи к 5 дек.

2 минуты назад

краткая характеристика сбербанка анализ тарифов РКО

Отчет по практике, дистанционное банковское обслуживание

Срок сдачи к 5 дек.

2 минуты назад

Исследование методов получения случайных чисел с заданным законом распределения

Лабораторная, Моделирование, математика

Срок сдачи к 10 дек.

4 минуты назад

Проектирование заготовок, получаемых литьем в песчано-глинистые формы

Лабораторная, основы технологии машиностроения

Срок сдачи к 14 дек.

4 минуты назад

2504

Презентация, ММУ одна

Срок сдачи к 7 дек.

6 минут назад

выполнить 3 задачи

Контрольная, Сопротивление материалов

Срок сдачи к 11 дек.

6 минут назад

Вам необходимо выбрать модель медиастратегии

Другое, Медиапланирование, реклама, маркетинг

Срок сдачи к 7 дек.

7 минут назад

Ответить на задания

Решение задач, Цифровизация процессов управления, информатика, программирование

Срок сдачи к 20 дек.

7 минут назад
8 минут назад

Все на фото

Курсовая, Землеустройство

Срок сдачи к 12 дек.

9 минут назад

Разработка веб-информационной системы для автоматизации складских операций компании Hoff

Диплом, Логистические системы, логистика, информатика, программирование, теория автоматического управления

Срок сдачи к 1 мар.

10 минут назад
11 минут назад

перевод текста, выполнение упражнений

Перевод с ин. языка, Немецкий язык

Срок сдачи к 7 дек.

11 минут назад
planes planes
Закажи индивидуальную работу за 1 минуту!

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами

Используя «Свежую базу РГСР», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:

Вход
Регистрация или
Не нашли, что искали?

Заполните форму и узнайте цену на индивидуальную работу!

Файлы (при наличии)

    это быстро и бесплатно